一步一步跟我学习lucene11-lucene搜索之高亮显示highlighter
目录
一步一步跟我学习lucene(11)—lucene搜索之高亮显示highlighter
highlighter介绍
这几天一直加班,博客有三天没有更新了,望见谅;我们在做查询的时候,希望对我们自己的搜索结果与搜索内容相近的地方进行着重显示,就如下面的效果
这里我们搜索的内容是“一步一步跟我学习lucene”,搜索引擎展示的结果中对用户的输入信息进行了配色方面的处理,这种区分正常文本和输入内容的效果即是高亮显示;
这样做的好处:
- 视觉上让人便于查找有搜索对应的文本块;
- 界面展示更友好;
lucene提供了highlighter插件来体现类似的效果;
highlighter对查询关键字高亮处理;
highlighter包包含了用于处理结果页查询内容高亮显示的功能,其中Highlighter类highlighter包的核心组件,借助Fragmenter, fragment Scorer, 和Formatter等类来支持用户自定义高亮展示的功能;
示例程序
这里边我利用了之前的做的目录文件索引
package com.lucene.search.util;
import java.io.IOException;
import java.io.StringReader;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.search.highlight.Highlighter;
import org.apache.lucene.search.highlight.InvalidTokenOffsetsException;
import org.apache.lucene.search.highlight.QueryScorer;
import org.apache.lucene.search.highlight.SimpleFragmenter;
import org.apache.lucene.search.highlight.SimpleHTMLFormatter;
import org.apache.lucene.util.BytesRef;
public class HighlighterTest {
public static void main(String[] args) {
IndexSearcher searcher;
TopDocs docs;
ExecutorService service = Executors.newCachedThreadPool();
try {
searcher = SearchUtil.getMultiSearcher("index", service);
Term term = new Term("content",new BytesRef("lucene"));
TermQuery termQuery = new TermQuery(term);
docs = SearchUtil.getScoreDocsByPerPage(1, 30, searcher, termQuery);
ScoreDoc[] hits = docs.scoreDocs;
QueryScorer scorer = new QueryScorer(termQuery);
SimpleHTMLFormatter simpleHtmlFormatter = new SimpleHTMLFormatter("<B>","</B>");//设定高亮显示的格式<B>keyword</B>,此为默认的格式
Highlighter highlighter = new Highlighter(simpleHtmlFormatter,scorer);
highlighter.setTextFragmenter(new SimpleFragmenter(20));//设置每次返回的字符数
Analyzer analyzer = new StandardAnalyzer();
for(int i=0;i<hits.length;i++){
Document doc = searcher.doc(hits[i].doc);
String str = highlighter.getBestFragment(analyzer, "content", doc.get("content")) ;
System.out.println(str);
}
} catch (IOException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
} catch (InvalidTokenOffsetsException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}finally{
service.shutdown();
}
}
}
lucene的highlighter高亮展示的原理:
- 根据Formatter和Scorer创建highlighter对象,formatter定义了高亮的显示方式,而scorer定义了高亮的评分;
评分的算法是先根据term的评分值获取对应的document的权重,在此基础上对文本的内容进行轮询,获取对应的文本出现的次数,和它在term对应的文本中出现的位置(便于高亮处理),评分并分词的算法为:
public float getTokenScore() {
position += posIncAtt.getPositionIncrement();//记录出现的位置
String termText = termAtt.toString();
WeightedSpanTerm weightedSpanTerm;
if ((weightedSpanTerm = fieldWeightedSpanTerms.get(
termText)) == null) {
return 0;
}
if (weightedSpanTerm.positionSensitive &&
!weightedSpanTerm.checkPosition(position)) {
return 0;
}
float score = weightedSpanTerm.getWeight();//获取权重
// found a query term - is it unique in this doc?
if (!foundTerms.contains(termText)) {//结果排重处理
totalScore += score;
foundTerms.add(termText);
}
return score;
}
formatter的原理为:对搜索的文本进行判断,如果scorer获取的totalScore不小于0,即查询内容在对应的term中存在,则按照格式拼接成preTag+查询内容+postTag的格式
详细算法如下:
public String highlightTerm(String originalText, TokenGroup tokenGroup) {
if (tokenGroup.getTotalScore() <= 0) {
return originalText;
}
// Allocate StringBuilder with the right number of characters from the
// beginning, to avoid char[] allocations in the middle of appends.
StringBuilder returnBuffer = new StringBuilder(preTag.length() + originalText.length() + postTag.length());
returnBuffer.append(preTag);
returnBuffer.append(originalText);
returnBuffer.append(postTag);
return returnBuffer.toString();
}
其默认格式为“”的形式;
- Highlighter根据scorer和formatter,对document进行分析,查询结果调用getBestTextFragments,TokenStream tokenStream,String text,boolean mergeContiguousFragments,int maxNumFragments),其过程为
- scorer首先初始化查询内容对应的出现位置的下标,然后对tokenstream添加PositionIncrementAttribute,此类记录单词出现的位置;
- 对文本内容进行轮询,判断查询的文本长度是否超出限制,如果超出文本长度提示过长内容;
- 如果获取到指定的文本,先对单次查询的内容进行内容的截取(截取值根据setTextFragmenter指定的值决定),再调用formatter的highlightTerm方法对文本进行重新构建
- 在本次轮询和下次单词出现之前对文本内容进行处理
查询工具类
package com.lucene.search.util;
import java.io.File;
import java.io.IOException;
import java.nio.file.Paths;
import java.util.Set;
import java.util.concurrent.ExecutorService;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.MultiReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.queryparser.classic.ParseException;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.MatchAllDocsQuery;
import org.apache.lucene.search.NumericRangeQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.highlight.Highlighter;
import org.apache.lucene.search.highlight.InvalidTokenOffsetsException;
import org.apache.lucene.search.highlight.QueryScorer;
import org.apache.lucene.search.highlight.SimpleFragmenter;
import org.apache.lucene.search.highlight.SimpleHTMLFormatter;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.BytesRef;
/**lucene索引查询工具类
* @author lenovo
*
*/
public class SearchUtil {
/**获取IndexSearcher对象
* @param indexPath
* @param service
* @return
* @throws IOException
*/
public static IndexSearcher getIndexSearcherByParentPath(String parentPath,ExecutorService service) throws IOException{
MultiReader reader = null;
//设置
try {
File[] files = new File(parentPath).listFiles();
IndexReader[] readers = new IndexReader[files.length];
for (int i = 0 ; i < files.length ; i ++) {
readers[i] = DirectoryReader.open(FSDirectory.open(Paths.get(files[i].getPath(), new String[0])));
}
reader = new MultiReader(readers);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return new IndexSearcher(reader,service);
}
/**多目录多线程查询
* @param parentPath 父级索引目录
* @param service 多线程查询
* @return
* @throws IOException
*/
public static IndexSearcher getMultiSearcher(String parentPath,ExecutorService service) throws IOException{
File file = new File(parentPath);
File[] files = file.listFiles();
IndexReader[] readers = new IndexReader[files.length];
for (int i = 0 ; i < files.length ; i ++) {
readers[i] = DirectoryReader.open(FSDirectory.open(Paths.get(files[i].getPath(), new String[0])));
}
MultiReader multiReader = new MultiReader(readers);
IndexSearcher searcher = new IndexSearcher(multiReader,service);
return searcher;
}
/**根据索引路径获取IndexReader
* @param indexPath
* @return
* @throws IOException
*/
public static DirectoryReader getIndexReader(String indexPath) throws IOException{
return DirectoryReader.open(FSDirectory.open(Paths.get(indexPath, new String[0])));
}
/**根据索引路径获取IndexSearcher
* @param indexPath
* @param service
* @return
* @throws IOException
*/
public static IndexSearcher getIndexSearcherByIndexPath(String indexPath,ExecutorService service) throws IOException{
IndexReader reader = getIndexReader(indexPath);
return new IndexSearcher(reader,service);
}
/**如果索引目录会有变更用此方法获取新的IndexSearcher这种方式会占用较少的资源
* @param oldSearcher
* @param service
* @return
* @throws IOException
*/
public static IndexSearcher getIndexSearcherOpenIfChanged(IndexSearcher oldSearcher,ExecutorService service) throws IOException{
DirectoryReader reader = (DirectoryReader) oldSearcher.getIndexReader();
DirectoryReader newReader = DirectoryReader.openIfChanged(reader);
return new IndexSearcher(newReader, service);
}
/**多条件查询类似于sql in
* @param querys
* @return
*/
public static Query getMultiQueryLikeSqlIn(Query ... querys){
BooleanQuery query = new BooleanQuery();
for (Query subQuery : querys) {
query.add(subQuery,Occur.SHOULD);
}
return query;
}
/**多条件查询类似于sql and
* @param querys
* @return
*/
public static Query getMultiQueryLikeSqlAnd(Query ... querys){
BooleanQuery query = new BooleanQuery();
for (Query subQuery : querys) {
query.add(subQuery,Occur.MUST);
}
return query;
}
/**从指定配置项中查询
* @return
* @param analyzer 分词器
* @param field 字段
* @param fieldType 字段类型
* @param queryStr 查询条件
* @param range 是否区间查询
* @return
*/
public static Query getQuery(String field,String fieldType,String queryStr,boolean range){
Query q = null;
try {
if(queryStr != null && !"".equals(queryStr)){
if(range){
String[] strs = queryStr.split("\\|");
if("int".equals(fieldType)){
int min = new Integer(strs[0]);
int max = new Integer(strs[1]);
q = NumericRangeQuery.newIntRange(field, min, max, true, true);
}else if("double".equals(fieldType)){
Double min = new Double(strs[0]);
Double max = new Double(strs[1]);
q = NumericRangeQuery.newDoubleRange(field, min, max, true, true);
}else if("float".equals(fieldType)){
Float min = new Float(strs[0]);
Float max = new Float(strs[1]);
q = NumericRangeQuery.newFloatRange(field, min, max, true, true);
}else if("long".equals(fieldType)){
Long min = new Long(strs[0]);
Long max = new Long(strs[1]);
q = NumericRangeQuery.newLongRange(field, min, max, true, true);
}
}else{
if("int".equals(fieldType)){
q = NumericRangeQuery.newIntRange(field, new Integer(queryStr), new Integer(queryStr), true, true);
}else if("double".equals(fieldType)){
q = NumericRangeQuery.newDoubleRange(field, new Double(queryStr), new Double(queryStr), true, true);
}else if("float".equals(fieldType)){
q = NumericRangeQuery.newFloatRange(field, new Float(queryStr), new Float(queryStr), true, true);
}else{
Analyzer analyzer = new StandardAnalyzer();
q = new QueryParser(field, analyzer).parse(queryStr);
}
}
}else{
q= new MatchAllDocsQuery();
}
System.out.println(q);
} catch (ParseException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return q;
}
/**根据field和值获取对应的内容
* @param fieldName
* @param fieldValue
* @return
*/
public static Query getQuery(String fieldName,Object fieldValue){
Term term = new Term(fieldName, new BytesRef(fieldValue.toString()));
return new TermQuery(term);
}
/**根据IndexSearcher和docID获取默认的document
* @param searcher
* @param docID
* @return
* @throws IOException
*/
public static Document getDefaultFullDocument(IndexSearcher searcher,int docID) throws IOException{
return searcher.doc(docID);
}
/**根据IndexSearcher和docID
* @param searcher
* @param docID
* @param listField
* @return
* @throws IOException
*/
public static Document getDocumentByListField(IndexSearcher searcher,int docID,Set<String> listField) throws IOException{
return searcher.doc(docID, listField);
}
/**分页查询
* @param page 当前页数
* @param perPage 每页显示条数
* @param searcher searcher查询器
* @param query 查询条件
* @return
* @throws IOException
*/
public static TopDocs getScoreDocsByPerPage(int page,int perPage,IndexSearcher searcher,Query query) throws IOException{
TopDocs result = null;
if(query == null){
System.out.println(" Query is null return null ");
return null;
}
ScoreDoc before = null;
if(page != 1){
TopDocs docsBefore = searcher.search(query, (page-1)*perPage);
ScoreDoc[] scoreDocs = docsBefore.scoreDocs;
if(scoreDocs.length > 0){
before = scoreDocs[scoreDocs.length - 1];
}
}
result = searcher.searchAfter(before, query, perPage);
return result;
}
public static TopDocs getScoreDocs(IndexSearcher searcher,Query query) throws IOException{
TopDocs docs = searcher.search(query, getMaxDocId(searcher));
return docs;
}
/**高亮显示字段
* @param searcher
* @param field
* @param keyword
* @param preTag
* @param postTag
* @param fragmentSize
* @return
* @throws IOException
* @throws InvalidTokenOffsetsException
*/
public static String[] highlighter(IndexSearcher searcher,String field,String keyword,String preTag, String postTag,int fragmentSize) throws IOException, InvalidTokenOffsetsException{
Term term = new Term("content",new BytesRef("lucene"));
TermQuery termQuery = new TermQuery(term);
TopDocs docs = getScoreDocs(searcher, termQuery);
ScoreDoc[] hits = docs.scoreDocs;
QueryScorer scorer = new QueryScorer(termQuery);
SimpleHTMLFormatter simpleHtmlFormatter = new SimpleHTMLFormatter(preTag,postTag);//设定高亮显示的格式<B>keyword</B>,此为默认的格式
Highlighter highlighter = new Highlighter(simpleHtmlFormatter,scorer);
highlighter.setTextFragmenter(new SimpleFragmenter(fragmentSize));//设置每次返回的字符数
Analyzer analyzer = new StandardAnalyzer();
String[] result = new String[hits.length];
for (int i = 0; i < result.length ; i++) {
Document doc = searcher.doc(hits[i].doc);
result[i] = highlighter.getBestFragment(analyzer, field, doc.get(field));
}
return result;
}
/**统计document的数量,此方法等同于matchAllDocsQuery查询
* @param searcher
* @return
*/
public static int getMaxDocId(IndexSearcher searcher){
return searcher.getIndexReader().maxDoc();
}
}
源码下载地址
一步一步跟我学习lucene是对近期做lucene索引的总结,大家有问题的话联系本人的Q-Q: 891922381,同时本人新建Q-Q群:106570134(lucene,solr,netty,hadoop),大家共同探讨,本人争取每日一博,希望大家持续关注,会带给大家惊喜的