目录

均方值-数学期望-方差

均方值-数学期望-方差

数学期望

以实验中观查实验结果值的算术平均为例,解释数学期望的物理含义:

设共作了N次独立实验,实验结果值为x,x可能有m种值,即

https://gss1.bdstatic.com/-vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D81/sign=d20fef808e35e5dd942ca8de74c622dd/aa18972bd40735fa7b00416b95510fb30e24086b.jpg

,在N次实验中各x值得到的次数分别为

https://gss0.bdstatic.com/-4o3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D83/sign=8de0ade83b4e251fe6f7e9fba58613e4/dbb44aed2e738bd47fc8bde3aa8b87d6267ff973.jpg

,则有

https://gss0.bdstatic.com/94o3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D132/sign=72c5c9315c2c11dfdad1bb2051266255/2934349b033b5bb5d9f62e2c3dd3d539b600bc3a.jpg

次,故可求出x的算术平均值为:

https://gss1.bdstatic.com/-vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D398/sign=07a2401601d162d981ee641529dda950/6a600c338744ebf81fe66aedd2f9d72a6159a748.jpg

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D197/sign=399dc43eda00baa1be2c43b27011b9b1/c995d143ad4bd113d550bee051afa40f4afb0546.jpg

根据 ,当

https://gss1.bdstatic.com/9vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D54/sign=593730163aadcbef05347e02adafd72a/9345d688d43f87942d5741fcd91b0ef41ad53ab3.jpg

时,

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D12/sign=3a345fae222eb938e86d7ef0d4622701/d50735fae6cd7b89f08266cc022442a7d8330e96.jpg

趋于稳定,即趋向某一概率值,故上述可写成:

https://gss1.bdstatic.com/9vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D342/sign=1e06d4c6b399a9013f355d322f940a58/6a63f6246b600c338672d61a114c510fd8f9a1dc.jpg

因为

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D14/sign=b1b484da90504fc2a65fb401e4dd252d/e7cd7b899e510fb391be7f45d233c895d0430cb8.jpg

不可能达到

https://gss1.bdstatic.com/9vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D15/sign=d7734e6fa2773912c0268164f919a206/b17eca8065380cd7b053aa3faa44ad3458828196.jpg

的,因此P(x)的确切值是得不到的,E(x)只是一种 期望值 (ExpectedValue),故称为 数学期望 。实际上它可看成x的 均值

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

。(

https://gss3.bdstatic.com/-Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D37/sign=afcd7619f0edab6470724bc7f53656db/6159252dd42a28343f593ed950b5c9ea14cebf60.jpg

值出现的概率) [1]

均方值和方差

在概率统计中,对于离散型随机变量其均方值和方差如下(

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

表示

https://gss3.bdstatic.com/-Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D9/sign=59f59bed40fbfbedd8593a4e780e4f/8644ebf81a4c510fdaa3e8c86b59252dd52aa5f8.jpg

的均值):

均方值

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D206/sign=70b9992e77d98d1072d40b31173eb807/48540923dd54564ecc3cebebb8de9c82d0584f82.jpg

方 差

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D286/sign=6cedc8e19a8fa0ec7bc763051096594a/023b5bb5c9ea15ce38eeeadbbd003af33b87b2db.jpg

偏 差

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D84/sign=2e26efe2b1a1cd1101b67f24bb12658d/b999a9014c086e06cb6f349909087bf40bd1cb19.jpg

所以方差也称为偏差的 均方值

对于随时间连续变化的一个变量x(也可看时

https://gss1.bdstatic.com/-vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D28/sign=06d97020de62853596e0d52991ef2322/7a899e510fb30f24df2ee6d1c395d143ac4b03af.jpg

),其数学期望可写成:

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D153/sign=7b29911bdc2a60595610e51f1b35342d/8c1001e93901213f9228330e5fe736d12e2e95cc.jpg

它实际上就是

https://gss1.bdstatic.com/-vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D28/sign=06d97020de62853596e0d52991ef2322/7a899e510fb30f24df2ee6d1c395d143ac4b03af.jpg

的平均值

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

均方值:

https://gss3.bdstatic.com/7Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D236/sign=edd70ff2b212c8fcb0f3f1ceca0292b4/83025aafa40f4bfb64b1e386084f78f0f63618fa.jpg

方差为:

https://gss1.bdstatic.com/9vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D434/sign=150f9f2870cb0a4681228a3a5f61f63e/0dd7912397dda144b4c81160b9b7d0a20df4861a.jpg

其中

https://gss3.bdstatic.com/7Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D73/sign=fc4ff99cc18065387feaa61096ddc26c/3ac79f3df8dcd100d5fd84f3798b4710b8122ffa.jpg

称为 偏差

https://gss1.bdstatic.com/-vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D28/sign=06d97020de62853596e0d52991ef2322/7a899e510fb30f24df2ee6d1c395d143ac4b03af.jpg

为t时刻x变量的取值,

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

https://gss1.bdstatic.com/-vo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D28/sign=06d97020de62853596e0d52991ef2322/7a899e510fb30f24df2ee6d1c395d143ac4b03af.jpg

的平均值 [1]

随机信号的特性

编辑

随机过程的各个样本记录都不一样,因此不能象确定性信号那样用明确的数学关系式来表达。但是,这些样本记录却有共同的统计特性,因此,随机信号可以用概率统计特性来描述。常用的有以下几个主要的统计函数:

(1) 均方值、均值和方差;

(2) 概率密度函数;

(3) 自相关函数;

(4) 功率谱密度函数;

(5) 联合统计特性。

均方值、均值和方差

随机信号的强度,可以用其均方值来描述。对于平稳的遍历性随机过程,随机信号的均方值用样本函数平方值的时间平均来表示,即

https://gss3.bdstatic.com/-Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D178/sign=66a402a82ba446237acaa165a0237246/c75c10385343fbf2b997def1bb7eca8064388fac.jpg

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D22/sign=bbd274f0b81bb0518b24b42a377aa034/cb8065380cd791238578eca6a6345982b3b78043.jpg

称为 均方值 ,均方值的正平方根称为 均方根值 ,表示为

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D19/sign=15a88e1ff7039245a5b5e50686947d7c/622762d0f703918f768a45185a3d269758eec48d.jpg

工程上常把数据信号看成是不随时间而变化的静态分量(即直流分量) 和随时间而变化的动态分量二部分之和。静态分量可用均值来表示,均值

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

用公式表示

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D170/sign=c5130120de62853596e0d626a0ee76f2/4034970a304e251fcb899f2aac86c9177e3e53e1.jpg

随机信号的动态分量部分可以用方差来表述。方差

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=e12deca6a6345982c18ae2920ef4dc83/c2fdfc039245d688a2cfca76afc27d1ed31b2416.jpg

https://gss3.bdstatic.com/-Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D28/sign=2ed102a82ba446237acaa26a9a22ef88/e1fe9925bc315c60775b133d86b1cb1348547711.jpg

偏离均值

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

的平方的均值,它反映了过程离开均值的波动情况。用公式表示

https://gss0.bdstatic.com/94o3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D224/sign=00bf7a79083b5bb5bad727fc02d2d523/b90e7bec54e736d107a5f7da90504fc2d46269a9.jpg

方差

https://gss2.bdstatic.com/-fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=e12deca6a6345982c18ae2920ef4dc83/c2fdfc039245d688a2cfca76afc27d1ed31b2416.jpg

的正平方根为标准偏差

https://gss0.bdstatic.com/94o3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D16/sign=e6903d6fa2773912c0268167f919a22a/b17eca8065380cd781b0d93faa44ad34588281b1.jpg

,这在误差分析中是十分重要的参数。展开上式可知方差等于均方值减去均值的平方,即

https://gss0.bdstatic.com/-4o3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D100/sign=debcfdfbe0c4b7453094b316fffe1e78/8b13632762d0f7034566ee0e03fa513d2797c508.jpg

当均值

https://gss2.bdstatic.com/9fo3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D20/sign=3ef3ba76afc27d1ea1263cc419d578df/a1ec08fa513d2697b322008f5efbb2fb4216d86b.jpg

等于0时,则

https://gss3.bdstatic.com/7Po3dSag_xI4khGkpoWK1HF6hhy/baike/s%3D58/sign=0613f3d3576034a82de2b889ca130e4d/79f0f736afc379319563fcfbe0c4b74542a911dc.jpg

均方值/7425210?fr=aladdin

转载于:https://www.cnblogs.com/ruogu2019/p/11413184.html