目录

留数定理-含-数学物理方法吴崇试-第三版答案详解

留数定理 含 数学物理方法(吴崇试 第三版)答案详解

  • 留数什么是不令人愉快的
  • 据说,期末考得很简单,希望老师真的实践这一点。
  • 没有写出来的题,我要么打了问号,要么就没写上去,哈哈哈哈!

有限点留数的定义及留数定理

  • 我哪知道,光学都快没了

  • 赶紧润吧,no go to physics

  • 设函数f(z)以有限点a为孤立奇点,即f(z)在点a的去心领域0<|z-a|<R内解析,则称积分:

https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7B2%5Cpi%20i%20%7D%5Cint_%7B%5CGamma%7Df%28z%29dz%28%5CGamma%20%3A%7Cz-a%7C%3D%5Crho%2C0%3C%5Crho%3CR%29

  • 为f(z)在a点的留数,由柯西积分定理可得

https://latex.csdn.net/eq?Res%28f%28z%29%2Ca%29%3Dc_%7B-1%7D

柯西留数定理

  • f(z)在周线或复周线所围的范围内

https://latex.csdn.net/eq?%5Cint_Cf%28z%29dz%3D2%5Cpi%20i%20%5Csum_%7Bk%3D1%7D%5E%7Bn%7DRes%28f%28z%29%2Ca_k%29

有限点留数的求法

  • 许多求法,你就求吧

  • https://latex.csdn.net/eq?Res%28f%28z%29%2Ca%29%3Dc_%7B-1%7D

  • 当a为f(z)的可去奇点或者解析点时

https://latex.csdn.net/eq?Res%28f%28z%29%2Ca%29%3D0

  • 当a为n阶极点时,必然有 https://latex.csdn.net/eq?f%28z%29%3D%5Cfrac%7B%5Cvarphi%28z%29%7D%7B%28z-a%29%5En%7D ,因此

https://latex.csdn.net/eq?Res_%7Bz%3Da%7Df%28z%29%3D%5Cfrac%7B%5Cvarphi%5E%7B%28n-1%29%7D%28a%29%7D%7B%28n-1%29%21%7D

函数在无穷远点留数的定义及计算方法

无穷远点留数的定义

  • https://latex.csdn.net/eq?f%28z%29 在去心领域 https://latex.csdn.net/eq?N-%5Cbegin%7BBmatrix%7D%20%5Cinfty%20%5Cend%7BBmatrix%7D%3A0%5Cleq%20r%3C%20%5Cbegin%7Bvmatrix%7D%20z%20%5Cend%7Bvmatrix%7D%3C%20&plus;%5Cinfty

https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5CGamma%5E%7B-%7D%7Df%28z%29dz%28%5CGamma%3A%5Cbegin%7Bvmatrix%7D%20z%20%5Cend%7Bvmatrix%7D%3D%5Crho%3Er%29

  • 为函数在无穷远点处的留数

无穷远点处留数的求法

  • 拉兄弟一吧
  • 真男人就得当水手

定义法:

  • 评论一下,虽然我不知道为什么定义是这样,但是它就是这样,而且从我那朴素的感觉上看是这样,那我就也没有办法了,哈哈哈

展式:

  • https://latex.csdn.net/eq?Res%28f%28z%29%2C%5Cinfty%29%3D-c_%7B-1%7D

扩充复平面留数和定理:

  • 如果函数f(z)在扩充复平面上只有有限个孤立奇点,那么f(z)在各点的留数总和为0

零点替换:

  • https://latex.csdn.net/eq?Res%28f%28z%29%2C%5Cinfty%29%3D-Res%28f%28%5Cfrac%7B1%7D%7Bt%7D%29%5Cfrac%7B1%7D%7Bt%5E2%7D%2C0%29

四个特别重要的引理

小圆弧引理

  • 如果函数 https://latex.csdn.net/eq?f%28z%29https://latex.csdn.net/eq?z%3Da 的点的空心邻域内连续,并且在 https://latex.csdn.net/eq?%5Ctheta_1%20%5Cleq%20arg%28z-a%29%20%5Cleq%20%5Ctheta_2 中,当 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D%20z-a%20%5Cend%7Bvmatrix%7D%5Crightarrow%200 时, https://latex.csdn.net/eq?%28z-a%29f%28z%29 一致地趋近于k,则

https://latex.csdn.net/eq?%5Clim_%7B%5Cdelta%5Crightarrow0%7D%5Cint_%7BC_R%7Df%28z%29dz%3Dik%28%5Ctheta_2%20-%20%5Ctheta_1%29

其中, https://latex.csdn.net/eq?C_%5Cdelta 是以 https://latex.csdn.net/eq?z%3Da 为圆心, https://latex.csdn.net/eq?%5Cdelta 为半径,张角为 https://latex.csdn.net/eq?%5Ctheta_2-%5Ctheta_1 的圆弧

大圆弧引理

  • https://latex.csdn.net/eq?f%28z%29https://latex.csdn.net/eq?%5Cinfty 点的领域内连续,在 https://latex.csdn.net/eq?%5Ctheta_1%20%5Cleq%20arg%5C%2Cz%20%5Cleq%20%5Ctheta_2 中,当 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D%20z%5Cend%7Bvmatrix%7D%5Crightarrow%5Cinfty 时, https://latex.csdn.net/eq?zf%28z%29 一致地趋近于k,则

https://latex.csdn.net/eq?%5Clim_%7BR%5Crightarrow%5Cinfty%7D%5Cint_%7BC_R%7Df%28z%29dz%3Dik%28%5Ctheta_2-%5Ctheta_1%29

其中, https://latex.csdn.net/eq?C_R 是以 https://latex.csdn.net/eq?z%3Da 为圆心, https://latex.csdn.net/eq?R 为半径,张角为 https://latex.csdn.net/eq?%5Ctheta_2-%5Ctheta_1 的圆弧

Jordan引理

  • https://latex.csdn.net/eq?0%5Cleq%20argz%5Cleq%20%5Cpi 范围内,当 https://latex.csdn.net/eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%20%5Crightarrow%20%5Cinfty 时, https://latex.csdn.net/eq?Q%28z%29 一致地趋于0,则有

https://latex.csdn.net/eq?%5Clim_%7BR%5Crightarrow%20%5Cinfty%7D%5Cint_%7BC_R%7DQ%28z%29e%5E%7Bipz%7Ddz%3D0

其中, https://latex.csdn.net/eq?p%3E0 , https://latex.csdn.net/eq?C_R 是以原点为圆心, https://latex.csdn.net/eq?R 为半径的上半圆弧

Jordan引理的补充引理

  • 函数 https://latex.csdn.net/eq?Q%28z%29 只有有限个奇点,且在下半平面的范围内,当 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D%20z%20%5Cend%7Bvmatrix%7D%5Crightarrow%5Cinfty 时一致地趋近于0,则

https://latex.csdn.net/eq?%5Clim_%7BR%5Crightarrow%5Cinfty%7D%5Cint_%7BC_R%7DQ%28z%29e%5E%7B-ipz%7Ddz%3D2%5Cpi%20i%20%5Ctimes%20%5Csum%20res%20%5Cbegin%7BBmatrix%7D%20Q%28z%29e%5E%7B-ipz%7D%20%5Cend%7BBmatrix%7D%3D-2%5Cpi%20i%20%5Ctimes%20res%5Cbegin%7BBmatrix%7DQ%28z%29e%5E%7B-ipz%7D%20%5Cend%7BBmatrix%7D_%7Bz%3D%5Cinfty%7D

其中 https://latex.csdn.net/eq?p%3E0 , https://latex.csdn.net/eq?C_R 是以原点为圆心, https://latex.csdn.net/eq?R 为半径的上半圆弧

作业答案

https://i-blog.csdnimg.cn/blog_migrate/5a68972c019ff7457e9c9e4c564d4049.png

https://i-blog.csdnimg.cn/blog_migrate/28be9160c078161f7f82ac2fa281672b.png

https://i-blog.csdnimg.cn/blog_migrate/787fa2783dd73aa02d205e7b1762430d.png

https://i-blog.csdnimg.cn/blog_migrate/4cdbbc4f9714c8f73664351e3cd801d3.png

https://i-blog.csdnimg.cn/blog_migrate/78c2c4f108ce1b4c295643bca55ad97b.png

https://i-blog.csdnimg.cn/blog_migrate/cfd44dee2682d18d3d7a5aa016269f49.png

https://i-blog.csdnimg.cn/blog_migrate/9156d1f2ea9d9edf50c0419f8e632981.png

https://i-blog.csdnimg.cn/blog_migrate/cbccae4d68e920b457a919ce939f43fe.png

https://i-blog.csdnimg.cn/blog_migrate/4da61070954eee2b4b4f90c8107ce694.png

(sinx/x)^n积分的问题

  • n=1

https://latex.csdn.net/eq?%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bsin%5C%2Cx%7D%7Bx%7Ddx%3D%5Cpi

https://latex.csdn.net/eq?%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bsin%5C%2Cx%7D%7Bx%7Ddx%3D%5Cpi%3DIm%28%5Cint_%7B-R%7D%5E%7B-%5Cdelta%7D%5Cfrac%7Be%5E%7Biz%7D%7D%7Bz%7Ddz&plus;%5Cint_%7B%5Cdelta%7D%5E%7BR%7D%5Cfrac%7Be%5E%7Biz%7D%7D%7Bz%7Ddz%29

https://latex.csdn.net/eq?%5Cint_%7B-C_%5Cdelta%7D%5Cfrac%7Be%5E%7Biz%7D%7D%7Bz%7Ddz&plus;%5Cint_%7B-R%7D%5E%7B-%5Cdelta%7D%5Cfrac%7Be%5E%7Biz%7D%7D%7Bz%7Ddz&plus;%5Cint_%7B%5Cdelta%7D%5E%7BR%7D%5Cfrac%7Be%5E%7Biz%7D%7D%7Bz%7Ddz&plus;%5Cint_%7BC_R%7D%5Cfrac%7Be%5E%7Biz%7D%7D%7Bz%7Ddz%3D0

  • n=2

https://latex.csdn.net/eq?%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bsin%5E2%5C%2Cx%7D%7Bx%5E2%7Ddx%3D%5Cpi

  • n=3