目录

测试tensorflow-gpu-2.0安装成功

测试tensorflow-gpu-2.0安装成功

方法一

测试代码如下:

import tensorflow as tf
import timeit


with tf.device('/cpu:0'):
	cpu_a = tf.random.normal([10000, 1000])
	cpu_b = tf.random.normal([1000, 2000])
	print(cpu_a.device, cpu_b.device)

with tf.device('/gpu:0'):
	gpu_a = tf.random.normal([10000, 1000])
	gpu_b = tf.random.normal([1000, 2000])
	print(gpu_a.device, gpu_b.device)

def cpu_run():
	with tf.device('/cpu:0'):
		c = tf.matmul(cpu_a, cpu_b)
	return c 

def gpu_run():
	with tf.device('/gpu:0'):
		c = tf.matmul(gpu_a, gpu_b)
	return c 


# warm up
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('warmup:', cpu_time, gpu_time)


cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('run time:', cpu_time, gpu_time)

输出结果为:

https://i-blog.csdnimg.cn/blog_migrate/396cbd4af359436ba4e59c913cc53403.png

方法二

测试代码:

import tensorflow as tf
import os

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)

print('GPU:', tf.test.is_gpu_available())

输出结果:

https://i-blog.csdnimg.cn/blog_migrate/dc5c57456ea9f2178ed14e6a074dca02.png