目录

机器学习中的数学基础

机器学习中的数学基础

对于想入门机器学习的同学,很多时候都会觉得数学基础是一道坎,所以,本文将讲述机器学习中所涉及的数学基础。

数学是基石,算法是利器,编程是工具 。三者对于机器学习都很重要。机器学习中大量的问题最终都可以归结为一个优化问题,而微积分、概率、线性代数和矩阵是优化的基础。所以,下面将以四个方面来叙述机器学习中的数学基础。

1.微积分重点

1.1 导数

  • 导数的定义:

    f

    (

    a

    )

    =

    lim

    h

    0

    f

    (

    a

h

)

f

(

a

)

h

  • 常见函数的导数

    https://img-blog.csdn.net/20170814144549776?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • 导数求导法则

    https://img-blog.csdn.net/20170814144604847?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

1.2 梯度和Hessian矩阵

  • 梯度:

    https://img-blog.csdn.net/20170814145129323?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • Hessian矩阵

    https://img-blog.csdn.net/20170814145219606?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

1.3 泰勒级数与极值

  • 泰勒级数展开(标量)

    https://img-blog.csdn.net/20170814145544824?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

    若存在

    f

    (

    x

    k

    )

    =

    0

    ,则称

    x

    k

    为平稳点。此时,如果

    f

    ′′

    (

    x

    k

    )

    0

    ,则称

    x

    k

    为严格局部极小点,如果

    f

    ′′

    (

    x

    k

    )

    <

    0

    ,则称

    x

    k

    为严格局部极大点。如果

    f

    ′′

    (

    x

    k

    )

    =

    0

    ,则

    x

    k

    有可能是一个鞍点。

  • 泰勒级数展开(矢量)

    https://img-blog.csdn.net/20170814150045317?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

    https://img-blog.csdn.net/20170814150630156?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

2.概率论重点

2.1 随机变量

  • 累积分布函数

    https://img-blog.csdn.net/20170814151307990?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • 概率密度函数

    https://img-blog.csdn.net/20170814151354107?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

2.2 高斯分布

  • 概率密度函数

    https://img-blog.csdn.net/20170814151444739?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

    https://img-blog.csdn.net/20170814151635536?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

2.3 贝叶斯公式

  • 概念

    贝叶斯公式作为机器学习中最重要的公式,所以一定得理解它。贝叶斯公式所解决的问题就是由P(A|B)求解出P(B|A),如果此时,我们把A当做机器学习中的标记值,把B当做特征值。那么,从贝叶斯的角度解释机器学习为:已知许多已知标签的特征值,求得一组新的特征值所表示的标记值。

  • 公式:

    https://img-blog.csdn.net/20170814152448327?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

3.矩阵重点

3.1 方阵的特征值与特征向量

  • 定义

    https://img-blog.csdn.net/20170814153110307?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • 性质

    https://img-blog.csdn.net/20170814153259772?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

    https://img-blog.csdn.net/20170814153432758?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

    https://img-blog.csdn.net/20170814153534729?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

3.2 二次型

  • 概念

    https://img-blog.csdn.net/20170814153650226?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

3.3 特征分解的应用-PCA

  • PCA本质

    https://img-blog.csdn.net/20170814153921596?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

    https://img-blog.csdn.net/20170814154321885?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • PCA例子

    https://img-blog.csdn.net/20170814154533385?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

4.凸优化重点

  • 约束优化问题

    https://img-blog.csdn.net/20170814154708452?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • 约束优化问题存在极值点的必要条件-KKT条件

    https://img-blog.csdn.net/20170814155111432?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXo5MzA2MTg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

到此,就叙述完机器学习中十分重要的数学基础了。其中,文中的截图均来至于参考文献。

参考文献

【1】5月深度学习班-程博士