目录

Floyd算法有向图

目录

Floyd算法——有向图

使用的是在线编译器

#include <stdio.h>
#define V 6    //设定图中的顶点数
#define INF 65535   // 设置一个最大值
int P[V][V] = { 0 }; //记录各个顶点之间的最短路径
void printMatrix(int matrix[][V]);  //输出各个顶点之间的最短路径
void printPath(int i, int j); // 递归输出各个顶点之间最短路径的具体线路
void floydWarshall(int graph[][V]); // 实现弗洛伊德算法

int main() {
    // 有向加权图中各个顶点之间的路径信息
    int graph[V][V] = { {0, INF, 1,INF, INF, INF},
                          {3, 0, INF, 4, 1, INF},
                          {INF, 5, 0, INF, 1, 5},
                          {INF, INF, INF, 0, 1, INF},
                          {INF, INF, INF, INF, 0, 3},
                          {INF, 2, INF, 5, INF, 0}};
    floydWarshall(graph);
}
// 中序递归输出各个顶点之间最短路径的具体线路
void printPath(int i, int j)
{
    int k = P[i][j];
    if (k == 0)
        return;
    printPath(i, k);
    printf("%d-", k + 1);
    printPath(k, j);
}
// 输出各个顶点之间的最短路径
void printMatrix(int graph[][V]) {
    int i, j;
    for (i = 0; i < V; i++) {
        for (j = 0; j < V; j++) {
            if (j == i) {
                continue;
            }
            printf("%d - %d: 最短路径为:", i + 1, j + 1);
            if (graph[i][j] == INF)
                printf("%s\n", "INF");
            else {
                printf("%d", graph[i][j]);
                printf(",依次经过:%d-", i + 1);
                //调用递归函数
                printPath(i, j);
                printf("%d\n", j + 1);
            }
        }
    }
}
// 实现弗洛伊德算法,graph[][V] 为有向加权图
void floydWarshall(int graph[][V]) {
    int  i, j, k;
    //遍历每个顶点,将其作为其它顶点之间的中间顶点,更新 graph 数组
    for (k = 0; k < V; k++) {
        for (i = 0; i < V; i++) {
            for (j = 0; j < V; j++) {
                //如果新的路径比之前记录的更短,则更新 graph 数组
                if (graph[i][k] + graph[k][j] < graph[i][j]) {
                    graph[i][j] = graph[i][k] + graph[k][j];
                    //记录此路径
                    P[i][j] = k;
                }
            }
        }
    }
    // 输出各个顶点之间的最短路径
    printMatrix(graph);
}

https://i-blog.csdnimg.cn/direct/401e4b865b47416594c6c6c0e3cbb344.png