目录

考研数学非数竞赛复习之Stolz定理求解数列极限

考研数学&非数竞赛复习之Stolz定理求解数列极限

https://i-blog.csdnimg.cn/direct/88c161adca634d539fc694e5a89cd517.gif

在非数类大学生数学竞赛中,Stolz定理作为一种强大的工具,经常被用来解决和式数列极限的问题,也被誉为离散版的’洛必达’方法,它提供了一种简洁而有效的方法,使得原本复杂繁琐的极限计算过程变得直观明了。本文,我们将通过几个例题介绍该定理的使用方法。

https://i-blog.csdnimg.cn/direct/4ef89d806752443b9d0f53dc8a49059a.jpeg

stolz定理

1.设数列 https://latex.csdn.net/eq?%5Cleft%20%5C%7B%20a_n%20%5Cright%20%5C%7D

, https://latex.csdn.net/eq?%5Cleft%20%5C%7B%20b_n%20%5Cright%20%5C%7D

满足: https://latex.csdn.net/eq?%5Cleft%20%5C%7B%20b_n%20%5Cright%20%5C%7D

严格单调递增

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cleft%20%5C%7B%20b_n%20%5Cright%20%5C%7D%3D%5Cinfty

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cleft%20%5C%7B%20a_n%20%5Cright%20%5C%7D%3D%5Cinfty

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_n-a_n-1%7D%7Bb_n-b_n-1%7D%3DL

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_n%7D%7Bb_n%7D%3DL

此为 https://latex.csdn.net/eq?%5Cfrac%7B%5Cinfty%7D%7B%5Cinfty%7D 型未定式


2.设数列 https://latex.csdn.net/eq?%5Cleft%20%5C%7B%20a_n%20%5Cright%20%5C%7D

, https://latex.csdn.net/eq?%5Cleft%20%5C%7B%20b_n%20%5Cright%20%5C%7D

满足: https://latex.csdn.net/eq?%5Cleft%20%5C%7B%20b_n%20%5Cright%20%5C%7D

严格单调递减

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cleft%20%5C%7B%20b_n%20%5Cright%20%5C%7D%3D0

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cleft%20%5C%7B%20a_n%20%5Cright%20%5C%7D%3D0

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_n-a_n-1%7D%7Bb_n-b_n-1%7D%3DL

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_n%7D%7Bb_n%7D%3DL

此为 https://latex.csdn.net/eq?%5Cfrac%7B0%7D%7B0%7D 型未定式

定理看起来非常简单易懂,且该定理与洛必达公式形似。洛必达公式描述的是函数的导数的极限与原函数的极限之间的关系,该定理描述的是数列差分后的极限与原数列极限之间的关系。

例题


https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto0%7D%5Cfrac%7B1+%5Csqrt%7B2%7D+%5Csqrt%5B3%5D%7B3%7D+...%5Csqrt%5Bn%5D%7Bn%7D%7D%7Bn%7Dhttps://latex.csdn.net/eq?%5Cfrac%7B%5Cinfty%7D%7B%5Cinfty%7D

解:设 https://latex.csdn.net/eq?a_n%3D https://latex.csdn.net/eq?1+%5Csqrt%7B2%7D+%5Csqrt%5B3%5D%7B3%7D+...%5Csqrt%5Bn%5D%7Bn%7D , https://latex.csdn.net/eq?b_n%3Dn

https://latex.csdn.net/eq?a_n%3D%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Csqrt%5Bk%5D%7Bk%7D

https://latex.csdn.net/eq?a_%7Bn-1%7D%3D%5Csum_%7Bk%3D1%7D%5E%7Bn-1%7D%5Csqrt%5Bk%5D%7Bk%7D

https://latex.csdn.net/eq?a_n-a_%7Bn-1%7D%3D%5Csqrt%5Bn%5D%7Bn%7D

https://latex.csdn.net/eq?b_n-b_%7Bn-1%7D%3Dn-%28n-1%29%3D1

https://latex.csdn.net/eq?L%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_n-a_%7Bn-1%7D%7D%7Bb_n-b_%7Bn-1%7D%7D%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%7D%7D%7B1%7D

https://latex.csdn.net/eq?L%3D%5Clim_%7Bn%5Cto%5Cinfty%7De%5E%7B%5Cfrac%7B%5Cln%20n%7D%7Bn%7D%7D%3De%5E%7B%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B%5Cln%20n%7D%7Bn%7D%7D

https://latex.csdn.net/eq?L%3De%5E%7B0%7D%3D1

那么,原式极限结果为1


https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1+%5Csqrt%7B2%7D+%5Csqrt%7B3%7D+...+%5Csqrt%7Bn%7D%7D%7B%5Csqrt%7Bn+1%7D+%5Csqrt%7Bn+2%7D+...%5Csqrt%7Bn+n%7D%7Dhttps://latex.csdn.net/eq?%5Cfrac%7B%5Cinfty%7D%7B%5Cinfty%7D

解: 设 https://latex.csdn.net/eq?a_n%3D1+%5Csqrt%7B2%7D+%5Csqrt%7B3%7D+...+%5Csqrt%7Bn%7D%3D%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Csqrt%7Bk%7D

https://latex.csdn.net/eq?a_%7Bn-1%7D%3D%5Csum_%7Bk%3D1%7D%5E%7Bn-1%7D%5Csqrt%7Bk%7D

https://latex.csdn.net/eq?b_n%3D%5Csqrt%7Bn+1%7D+%5Csqrt%7Bn+2%7D+...%5Csqrt%7Bn+n%7D

( https://latex.csdn.net/eq?b_n 每一项内第一个n与其下标一致)

注意,对于 https://latex.csdn.net/eq?b_n 来说,经过观察我们不难发现 https://latex.csdn.net/eq?b_%7Bn-1%7D 不单单意味着原数列的前n-1项,同时我们还应该将 https://latex.csdn.net/eq?b_n 每一项内第一个n更改为n-1。即 https://latex.csdn.net/eq?b_%7Bn-1%7D%3D%5Csum_%7Bk%3D1%7D%5E%7Bn-1%7D%5Csqrt%7Bn-1+k%7D

https://latex.csdn.net/eq?b_%7Bn-1%7D%3D%5Csqrt%7Bn-1+1%7D+%5Csqrt%7Bn-1+2%7D+...+%5Csqrt%7Bn-1+n-1%7D

https://latex.csdn.net/eq?a_n-a_%7Bn-1%7D%3D%5Csqrt%7Bn%7D

https://latex.csdn.net/eq?b_n-b_%7Bn-1%7D%3D%5Csqrt%7B2n%7D+%5Csqrt%7B2n-1%7D-%5Csqrt%7Bn%7D

https://latex.csdn.net/eq?L%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_%7Bn-1%7D%7D%7Bb_%7Bn-1%7D%7D%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B%5Csqrt%7Bn%7D%7D%7B%5Csqrt%7B2n-1%7D+%5Csqrt%7B2n%7D-%5Csqrt%7Bn%7D%7D

利用’抓大头’思想不难得到 https://latex.csdn.net/eq?L%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7B2%7D-1%7D

那么,原式极限结果= https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7B2%5Csqrt%7B2%7D-1%7D


https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7Dn%5Cbegin%7Bpmatrix%7D%20%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+k%7D-ln2%20%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?%5Cfrac%7B0%7D%7B0%7D

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B%5Cbegin%7Bpmatrix%7D%20%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+k%7D-ln2%20%5Cend%7Bpmatrix%7D%7D%7B%5Cfrac%7B1%7D%7Bn%7D%7D

https://latex.csdn.net/eq?a_n%3D%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+k%7D , https://latex.csdn.net/eq?b_n%3D%5Cfrac%7B1%7D%7Bn%7D

对于分子来说 https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum%20_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+k%7D

可以变形为 https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7B1+%5Cfrac%7Bk%7D%7Bn%7D%7D%3D%5Cint_%7B0%7D%5E%7B1%7D%5Cfrac%7B1%7D%7B1+x%7Ddx%3Dln2

对于分母来说 https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%3D0

因此该极限满足 https://latex.csdn.net/eq?%5Cfrac%7B0%7D%7B0%7D 型未定式

https://latex.csdn.net/eq?L%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_%7Bn-1%7D%7D%7Bb_%7Bn-1%7D%7D

https://latex.csdn.net/eq?L%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+k%7D-ln2-%5Csum_%7Bk%3D1%7D%5E%7Bn-1%7D%5Cfrac%7B1%7D%7Bn-1+k%7D+ln2%7D%7B%5Cfrac%7B1%7D%7Bn%7D-%5Cfrac%7B1%7D%7Bn-1%7D%7D

https://latex.csdn.net/eq?L%3Dlim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B%5Cfrac%7B1%7D%7B2n%7D+%5Cfrac%7B1%7D%7B2n-1%7D-%5Cfrac%7B1%7D%7Bn%7D%7B%7D%7D%7B%5Cfrac%7B-1%7D%7Bn%28n-1%29%7D%7D

https://latex.csdn.net/eq?L%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B-n%28n+1%29%7D%7B%282n-1%29%282n%29%7D

利用’抓大头’思想不难得到 https://latex.csdn.net/eq?L%3D-%5Cfrac%7B1%7D%7B4%7D

那么原式极限结果为 https://latex.csdn.net/eq?-%5Cfrac%7B1%7D%7B4%7D

总结

https://i-blog.csdnimg.cn/direct/3e116cf8f96f487c954b11017872784d.gif

使用stolz定理求解数列极限,特别是和式极限时一定要化简至 https://latex.csdn.net/eq?%5Cfrac%7Ba_n%7D%7Bb_n%7D 的形式,并且在计算

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Ba_n-a_%7Bn-1%7D%7D%7Bb_n-b_%7Bn-1%7D%7D 时要格外注意数列差分结果的计算,不要只是简单的将n-1带入(特别是和式极限)

拿不准可以多展开几项,观察数列通项。

以上便是使用stolz定理求解数列极限时所有需要注意的地方,看完这篇文章,我相信你又将掌握一个求极限的利器。