目录

考研数学复习之定积分定义求解数列极限超详细教程

考研数学复习之定积分定义求解数列极限(超详细教程)

https://i-blog.csdnimg.cn/direct/98f91c5059414b90885f261860d915cf.gif

定积分定义求解数列极限是一种将数列极限问题转化为定积分问题进行求解的方法。这种方法通常适用于那些和式数列极限,其主要思路是将数列的项看作是某个函数在某一点或某一段区间上的取值或某种形式的和,然后利用定积分的性质和计算方法,来求解这类数列的极限。

https://i-blog.csdnimg.cn/direct/fc7df4b773bd4e319a11f57c45e59c92.jpeg

定积分定义

https://i-blog.csdnimg.cn/direct/4a14a752e27a41f2a2ad732a8916bdd8.png

设函数 https://latex.csdn.net/eq?y%3Df%28x%29 在区间 https://latex.csdn.net/eq?%5Ba%2Cb%5D 上有界,在 https://latex.csdn.net/eq?%5Ba%2Cb%5D 中任意插入若干个分点

​​​ https://latex.csdn.net/eq?a%3Dx_0%3Cx_1%3Cx2%3C...%3Cx_%7Bn-1%7D%3Cx_%7Bn%7D%3Db

把区间 https://latex.csdn.net/eq?%5Ba%2Cb%5D 分成n个小区间 https://latex.csdn.net/eq?%5Bx_0%2Cx_1%5D%2C%5Bx_1%2Cx_2%5D...%5Bx_%7Bn-1%7D%2Cx_n%5D

那么各个小区间的长度为​​​​​​:​​​ https://latex.csdn.net/eq?%5Cbigtriangleup%20x1%3Dx_1-x_0%2C%5Cbigtriangleup%20x2%3Dx_2-x_1...%5Cbigtriangleup%20x_n%3Dx_n-x_%7Bn-1%7D

接着,在每个小区间 https://latex.csdn.net/eq?%5Bx_%7Bi-1%7D%2Cx_i%5D 上任取一点 https://latex.csdn.net/eq?%5Cvarepsilon_i ,作函数值 https://latex.csdn.net/eq?f%28%5Cvarepsilon_i%29 与小区间长度 https://latex.csdn.net/eq?%5Cbigtriangleup%20x_i 的乘积 https://latex.csdn.net/eq?f%28%5Cvarepsilon_i%29%5Cbigtriangleup%20x_i (i=1,2,…·,n),并作出和式 https://latex.csdn.net/eq?S_n%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Df%28%5Cvarepsilon_i%29%5Cbigtriangleup%20x_i

https://latex.csdn.net/eq?%5Clambda%3Dmax%20%5Cbegin%7BBmatrix%7D%5Cbigtriangleup%20x_1%2C%5Cbigtriangleup%20x_1%2C...%5Cbigtriangleup%20x_n%5Cend%7BBmatrix%7D ,如果不论对区间 https://latex.csdn.net/eq?%5Ba%2Cb%5D 怎样划分,也不论在小区间 https://latex.csdn.net/eq?%5Bx_%7Bi-1%7D%2Cx_i%5D 上点 https://latex.csdn.net/eq?%5Cvarepsilon 怎样选取,只要当 https://latex.csdn.net/eq?%5Clambda%5Crightarrow0 时,和式 https://latex.csdn.net/eq?S_n 总趋于确定的极限 https://latex.csdn.net/eq?I ,那么称这个极限 https://latex.csdn.net/eq?I 为函数 https://latex.csdn.net/eq?f%28x%29 在区间 https://latex.csdn.net/eq?%5Ba%2Cb%5D 上的定积分,记作:

https://latex.csdn.net/eq?%5Clim_%7B%5Clambda%5Cto0%7DS_n%3D%5Clim_%7B%5Clambda%5Cto0%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Df%28%5Cvarepsilon_i%29%5Cbigtriangleup%20x_i%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx

https://latex.csdn.net/eq?%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx

数列极限与定积分定义的转换

对于定积分的定义,我们可以通过将区间进行特殊划分,进而把数列极限转化为定积分来计算。例如,将区间 https://latex.csdn.net/eq?%5Ba%2Cb%5D 进行等分,即 https://latex.csdn.net/eq?%5Cbigtriangleup%20x%3D%5Cfrac%7Bb-a%7D%7Bn%7D

那么任意一个切分点 https://latex.csdn.net/eq?x_i%3Da+i%5Cbigtriangleup%20x , https://latex.csdn.net/eq?x_%7Bi%7D

等差数列,首项为a,末项为b,公差d= https://latex.csdn.net/eq?%5Cbigtriangleup%20x

根据前边定积分的定义,我们需要任取一点 https://latex.csdn.net/eq?%5Cvarepsilon_i ,这里不妨令他为 https://latex.csdn.net/eq?x_i ,那么我们便有:

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Df%28a+%5Cfrac%7B%28b-a%29i%7D%7Bn%7D%29%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx (1)

这样就把数列极限的计算转化为求一个函数在指定区间上的定积分了。

注意:

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Df%28a+%5Cfrac%7B%28i-m%29%28b-a%29%7D%7Bn%7D%29%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx (2)

https://latex.csdn.net/eq?0%5Cleq%20m%5Cleq%201 时(1)(2)两式是等价的,实际上(1)式完全可以看做(2)式m=0的情况,这里我建议大家重点记忆(2)式。

原因:

https://i-blog.csdnimg.cn/direct/26d2ed69b72740be93938438f4db308b.jpeg

定积分定义的一些变型式

特别地,对于(1)式来说,还有一些常见的变型式:

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7Bkn%7Df%28a+%5Cfrac%7B%28b-a%29i%7D%7Bkn%7D%29%5Cfrac%7Bb-a%7D%7Bkn%7D%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx , https://latex.csdn.net/eq?k%5Cin%20N%5E%7B+%7D (3)

(3)式是最一般和通用的式子,我们务必要牢记。

当我们将(1)式中的f内部以及外部的k去掉后

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7Bkn%7Df%28a+%5Cfrac%7B%28b-a%29i%7D%7Bn%7D%29%5Cfrac%7Bb-a%7D%7Bn%7D%3D%5Cint_%7Bka%7D%5E%7Bkb%7Df%28x%29dx (4)

(4)式的证明很简单,其实就是整体代换的思路,此时我们将k(b-a)看做整体:

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7Bkn%7Df%28a+%5Cfrac%7Bk%28b-a%29i%7D%7Bkn%7D%29%5Cfrac%7Bk%28b-a%29%7D%7Bkn%7D%3D%5Cint_%7Bka%7D%5E%7Bkb%7Df%28x%29dx

当k=1,a=0,b=1时,我们便得到了利用定积分定义求解数列极限中的 ‘常客’ :

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Df%28%5Cfrac%7Bi%7D%7Bn%7D%29%3D%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx

转换方法

  1. 整理和式数列为 https://latex.csdn.net/eq?%5Csum_%7Bi%3D1%7D%5E%7Bkn%7D 的形式
  2. https://latex.csdn.net/eq?%5Csum_%7Bi%3D1%7D%5E%7Bkn%7D 内部对数列通项整理(一般是同除或同乘n, https://latex.csdn.net/eq?n%5E%7B2%7D ,… https://latex.csdn.net/eq?n%5E%7BN%7D , https://latex.csdn.net/eq?N%5Cin%20N%5E%7B+%7D )。
  3. 将所有含 https://latex.csdn.net/eq?%5Cfrac%7Bi%7D%7Bn%7D 的项看做x, https://latex.csdn.net/eq?%5Cfrac%7Bi%7D%7Bn%7D 外嵌套数列通项公式看做函数法则,那么便得到了(3)式。
  4. 实际转换时我们只需要按照 https://latex.csdn.net/eq?%5Cfrac%7Bi%7D%7Bn%7D 为核心去化简整理即可。

例. https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%5Cfrac%7Bln%28n%5E2+i%5E2%29-2ln%28n%29%7D%7Bn%7D

解:原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%5Cfrac%7Bln%28n%5E2+i%5E2%29-ln%28n%5E2%29%7D%7Bn%7D

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%5Cfrac%7Bln%281+%28%5Cfrac%7Bi%7D%7Bn%7D%29%5E2%29%7D%7Bn%7D

求和是针对i的, https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7Bn%7D 在求和符号内相当于常数

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%7Bln%281+%28%5Cfrac%7Bi%7D%7Bn%7D%29%5E2%29%7D

到这儿,我们便将这个数列极限整理成了非常完美的形式,并且还能一眼看出积分下限为0

被积函数为 https://latex.csdn.net/eq?ln%281+x%5E2%29 ,接下来就是判断上限了……

公式法判定上下限

根据符合定积分定义的和式数列的通项判定积分上下限是一项必备技能,倘若你遇到类似题目,发现可以使用定积分定义来做,但是却迟迟找不出积分上下限,那么这就太可惜了。

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bi%3D1%7D%5E%7Bkn%7Df%28a+%5Cfrac%7B%28b-a%29i%7D%7Bkn%7D%29%5Cfrac%7Bb-a%7D%7Bkn%7D%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx

以下是我自己总结的一个方法:

判定方法

  1. 定位到数列通项中含 https://latex.csdn.net/eq?%5Cfrac%7Bi%7D%7Bn%7D 的一坨式子,如(3)式中的 https://latex.csdn.net/eq?a+%5Cfrac%7B%28b-a%29i%7D%7Bkn%7D ,这里我们设它为 https://latex.csdn.net/eq?g%28n%2Ci%29 ,积分上下限分别为a,b,若g(n,i)中具有常数项,那么常数项为积分下限a,否则就是0。
  2. 令g(n,i)中的i分别为求和符号的上下限,一般而言是1和kn,那么a= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7Dg%28n%2C1%29 ,b= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7Dg%28n%2Ckn%29 ,由此便确定了积分的上下限。
  3. 求和符号外含 https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7Bn%7D 的式子我们称他为步长,那么既然已经有了积分上下限,那么这个步长也就呼之欲出了,步长显然就是 https://latex.csdn.net/eq?%5Cfrac%7Bb-a%7D%7Bkn%7D

例. https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%7Bln%281+%28%5Cfrac%7Bi%7D%7Bn%7D%29%5E2%29%7D

注意到g(n,i)为 https://latex.csdn.net/eq?%5Cfrac%7Bi%7D%7Bn%7D ,求和符号上下限分别为 https://latex.csdn.net/eq? 1与2n

令i=1, https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7Dg%28n%2C1%29 =0;

令i=2n, https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7Dg%28n%2C2n%29 =2;

那么显而易见,该极限对应的定积分上下限分别为0,2步长为 https://latex.csdn.net/eq?%5Cfrac%7B2-0%7D%7B2n%7D

https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7Bn%7D

原极限= https://latex.csdn.net/eq?%5Cint_%7B0%7D%5E%7B2%7Dln%281+x%5E2%29dx

例题

例子是最好的学习工具,丰富的例子远比枯燥的定义和公式更加让人有学习动力。

接下来,我们从易到难做几道例题,来巩固一下前边的知识点。


例1.(2021数二)设函数f(x)在[0,1]上连续,则 https://latex.csdn.net/eq?%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx

A. https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7Df%28%5Cfrac%7B2k%7D%7B2n%7D%29%5Cfrac%7B1%7D%7B2n%7D

B. https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7Df%28%5Cfrac%7B2k-1%7D%7B2n%7D%29%5Cfrac%7B1%7D%7Bn%7D

C. https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7Df%28%5Cfrac%7Bk-1%7D%7B2n%7D%29%5Cfrac%7B1%7D%7Bn%7D

D. https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bk%3D1%7D%5E%7B2n%7Df%28%5Cfrac%7Bk%7D%7B2n%7D%29%5Cfrac%7B2%7D%7Bn%7D

解: 本题使用我们刚刚讲解过的公式便可秒杀

正确选项为B,但这里需要注意的是,对于B项

我们还可以将其写作:

https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7Df%28%5Cfrac%7Bk-%5Cfrac%7B1%7D%7B2%7D%7D%7Bn%7D%29%5Cfrac%7B1%7D%7Bn%7D

也就是先前我们谈到的(2)式,这里的常数 https://latex.csdn.net/eq?%5Cfrac%7B1%7D%7B2%7D 并不会影响整个积分结果,于是我们可以将其忽略

那么剩下的便是 https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7Df%28%5Cfrac%7Bk%7D%7Bn%7D%29%5Cfrac%7B1%7D%7Bn%7D

这是最经典的 https://latex.csdn.net/eq?%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx 的定义。


(定积分定义直接计算)

例2.(2016数三)极限 https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%5E2%7D%28%5Csin%28%5Cfrac%7B1%7D%7Bn%7D%29+2%5Csin%28%5Cfrac%7B2%7D%7Bn%7D%29+...n%5Csin%28%5Cfrac%7Bn%7D%7Bn%7D%29%3D

解:原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7Bi%7D%7Bn%7D%5Csin%28%5Cfrac%7Bi%7D%7Bn%7D%29

根据判别方法,积分上下限为0,1

那么原式= https://latex.csdn.net/eq?%5Cint_%7B0%7D%5E%7B1%7Dxsinxdx

https://latex.csdn.net/eq?%5Csin%281%29-%5Ccos%281%29


(定积分定义+放缩)

例3.极限 https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%7Bn%7D%281-%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+%5Csqrt%7Bk%7D%7D%29

‘1’我们可以看做 https://latex.csdn.net/eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn%7D

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%7Bn%7D%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn%7D-%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bn+%5Csqrt%7Bk%7D%7D%29

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%7Bn%7D%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B%5Csqrt%7Bk%7D%7D%7Bn%28n+%5Csqrt%7Bk%7D%29%7D%29

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B%28%5Csqrt%7B%5Cfrac%7Bk%7D%7Bn%7D%7D%29%7D%7Bn+%5Csqrt%7Bk%7D%7D%29

原式= https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B%5Csqrt%7B%5Cfrac%7Bk%7D%7Bn%7D%7D%7D%7Bn+%5Csqrt%7Bk%7D%7D%29

https://latex.csdn.net/eq? https://latex.csdn.net/eq?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%7D%7B%7Bn+%5Csqrt%7B1%7D%7D%7D%5Cfrac%7B1%7D%7Bn%7D%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Csqrt%7B%5Cfrac%7Bk%7D%7Bn%7D%7D%29


总结

https://i-blog.csdnimg.cn/direct/a113359708e940e88c0db8e719c1a84d.gif

以上便是使用定积分定义求解数列极限时所有的要点,看完这篇文章,我相信你又将掌握一个求极限的利器。