目录

53.日常算法

53.日常算法

1.根据二叉树创建字符串

给你二叉树的根节点 root ,请你采用前序遍历的方式,将二叉树转化为一个由括号和整数组成的字符串,返回构造出的字符串。

空节点使用一对空括号对 “()” 表示,转化后需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。

示例 1

输入:root = [1,2,3,4]

输出:“1(2(4))(3)”

解释:初步转化后得到 “1(2(4)())(3()())” ,但省略所有不必要的空括号对后,字符串应该是"1(2(4))(3)" 。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void dfs(TreeNode* root, string& str){
        if (root == nullptr) return;
        str += "(";
        str += to_string(root->val);
        if (root->left == nullptr && root->right != nullptr) str += "()";
        dfs(root->left, str);
        dfs(root->right, str);
        str += ")";
    }
    string tree2str(TreeNode* root) {
        string ret;
        dfs(root, ret);
        return ret.substr(1, ret.size() - 2);
    }
};

2.买卖股票的最佳时机 II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]

输出:7

解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。

随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。

最大总利润为 4 + 3 = 7 。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        int dp[n][2];// dp[i][0]表示第i天交易完后手里没股票时的最大收益
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        for (int i = 1; i < n; i++){
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }
        return dp[n - 1][0];
    }
};