不同路径力扣-62
目录
不同路径力扣–62
题目
一个机器人位于一个
m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
思路
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
- 确定dp数组以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
- 确定递推公式
题目中说只能向右或者向下走,
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
dp[i - 1][j] 表示从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。
那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
有的可能会觉得为什么不是dp[i][j] = dp[i - 1][j] +1+ dp[i][j - 1]+1呢?如果+1就是再走一步到达终点,而题目中要求的是路径有几种,所以不要加。
- dp数组的初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。因为他只能往右或者下走
- 确定遍历顺序
这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
- 举例推导dp数组
m=3,n=2
1 | 1 |
1 | 2 |
1 | 3 |
代码
class Solution {
public int uniquePaths(int m, int n) {
int dp[][]=new int[m][n];//定义一个二维数组
for(int i=0;i<m;i++){//初始化
dp[i][0]=1;
}
for(int j=0;j<n;j++){
dp[0][j]=1;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}