目录

洛谷P10576-蓝桥杯-2024-国-A-儿童节快乐

目录

洛谷P10576 [蓝桥杯 2024 国 A] 儿童节快乐

设x^2=n+10120300500 , y^2=n−10120300500,x>y>=0

x^2-y^2=20,240,601,000

(x-y)(x+y)=20,240,601,000,枚举两个因数中较小的那个,也就是x-y,通过(x-y)和(x+y)相加相减消元来解出x和y,但是通过消元解出的x和y不一定满足x^2-y^2=20,240,601,000,(也可能y^2-x^2=20,240,601,000)需要验证这个式子成立,还需要(x+y)是偶数(这个可以通过写出n的表达式,由n是整数推得)

答案需要用 __int128 类型保存,这一类型支持到10的38次方,这一类型没有默认的输出方式,用将每一位拼成一个字符串的方法输出

答案:37044368843012180000

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;

#define ll __int128

ll const c=10120300500*2;

void print(ll x){
    if(x==0) {
        cout<<0<<"\n";
        return;
    }
    string res="";
    while(x){
        res=char(x%10+'0')+res;
        x/=10;
    }
    cout<<res<<"\n";
}

int main()
{
    ll ans=0;
    for(ll i=1;i*i<=c;i++){
        if(c%i==0){
            ll a=i,b=c/i;
            if(b%2!=0) continue;
            ll x=(a+b)/2,y=(b-a)/2;
            if(x*x-y*y!=c) continue;
            ans+=x*x-c/2;
        }
    }
    print(ans);
    return 0;
}