目录

力扣-Hot-100-刷题记录-对称二叉树

力扣 Hot 100 刷题记录 - 对称二叉树

力扣 Hot 100 刷题记录 - 对称二叉树

题目描述

是力扣 Hot 100 中的一道经典题目,题目要求如下:

给定一个二叉树的根节点 root ,检查它是否轴对称。

示例 1:

输入:root = [1,2,2,3,4,4,3]

输出:true

示例 2:

输入:root = [1,2,2,null,3,null,3]

输出:false


解题思路

这道题的核心是判断二叉树是否轴对称。常用的方法有以下两种:

  1. 递归法

    • 递归地比较左子树和右子树是否对称。
    • 左子树的左节点与右子树的右节点比较,左子树的右节点与右子树的左节点比较。
  2. 迭代法(广度优先搜索,BFS)

    • 使用队列进行层次遍历,比较每一层的节点是否对称。

C++ 代码实现

方法一:递归法

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if (!root) return true; // 空树是对称的
        return isMirror(root->left, root->right);
    }

private:
    bool isMirror(TreeNode* left, TreeNode* right) {
        if (!left && !right) return true; // 左右子树都为空
        if (!left || !right) return false; // 左右子树有一个为空
        if (left->val != right->val) return false; // 左右子树的值不相等

        // 递归比较左子树的左节点与右子树的右节点,以及左子树的右节点与右子树的左节点
        return isMirror(left->left, right->right) && isMirror(left->right, right->left);
    }
};

方法二:迭代法

#include <queue>

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if (!root) return true;

        queue<TreeNode*> q;
        q.push(root->left);
        q.push(root->right);

        while (!q.empty()) {
            TreeNode* left = q.front();
            q.pop();
            TreeNode* right = q.front();
            q.pop();

            if (!left && !right) continue; // 左右子树都为空
            if (!left || !right) return false; // 左右子树有一个为空
            if (left->val != right->val) return false; // 左右子树的值不相等

            // 将左子树的左节点与右子树的右节点加入队列
            q.push(left->left);
            q.push(right->right);

            // 将左子树的右节点与右子树的左节点加入队列
            q.push(left->right);
            q.push(right->left);
        }

        return true;
    }
};