NLP-40残差神经网络
目录
【NLP 40、残差神经网络】
—— 25.3.16
一、残差神经网络的核心思想
残差映射 :传统神经网络直接学习输入到输出的复杂映射 H(x),而残差网络改为学习残差函数 F(x)=H(x)−x,最终输出为 y=F(x)+x ,这种设计使得深层网络即使无法学习有效特征,也能通过恒等映射 x 保持性能不退化。
跳跃连接(Shortcut Connection) :
在残差块中,输入通过跨层连接直接传递到输出端,与经过卷积层、激活函数后的结果相加。这种设计为梯度提供了“直达路径”,缓解了反向传播中的梯度消失问题
二、残差块的设计
1.BasicBlock
- 含 两个 3×3 卷积层 ,每层后接批量归一化(BatchNorm)和 ReLU 激活函数
- 输入通过跳跃连接直接与第二个卷积层的输出相加,再经过一次 ReLU 激活
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Identity() # 恒等映射(输入输出通道相同时)
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x) # 跳跃连接
return F.relu(out)
2.Bottleneck
- 使用 1×1→3×3→1×1 的卷积组合 ,通过降维和升维减少计算量
- 典型应用于 ResNet-50/101/152 等深层变体
三、残差网络如何解决梯度消失
1. 梯度传播公式 :
根据链式法则,残差块的梯度为:
即使
趋近于零,梯度仍可通过恒等项 1 有效传播
2.实际效果 :
跳跃连接使得反向传播时梯度可直接回传到浅层,避免指数级衰减实验表明,ResNet-152(152层)的训练误差低于普通 CNN 的 20 层网络
3.代码示例
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNet18(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 残差块组
self.layer1 = self._make_layer(64, 64, stride=1, num_blocks=2)
self.layer2 = self._make_layer(64, 128, stride=2, num_blocks=2)
self.layer3 = self._make_layer(128, 256, stride=2, num_blocks=2)
self.layer4 = self._make_layer(256, 512, stride=2, num_blocks=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, in_channels, out_channels, stride, num_blocks):
layers = [BasicBlock(in_channels, out_channels, stride)]
for _ in range(num_blocks-1):
layers.append(BasicBlock(out_channels, out_channels, stride=1))
return nn.Sequential(*layers)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x))) # 初始卷积层
x = self.maxpool(x)
x = self.layer1(x) # 4组残差块
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x) # 全局平均池化
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 使用示例
model = ResNet18(num_classes=1000)
input_tensor = torch.randn(1, 3, 224, 224)
output = model(input_tensor)
print(output.shape) # torch.Size([1, 1000])