目录

神聖的綫性代數速成例題3.-矩陣列數的極限矩陣範數行列式的計算

目录

神聖的綫性代數速成例題3. 矩陣列數的極限、矩陣範數、行列式的計算

  1. 矩陣列數的極限 :設矩陣序列 https://latex.csdn.net/eq?%5C%7BA_k%5C%7D ,其中 https://latex.csdn.net/eq?A_k%3D%28a_%7Bij%7D%5E%7B%28k%29%7D%29 ,若對每個 https://latex.csdn.net/eq?i%2Cj 都有 https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7Bij%7D%5E%7B%28k%29%7D%20%3D%20a_%7Bij%7D ,則稱矩陣序列 https://latex.csdn.net/eq?%5C%7BA_k%5C%7D 收斂於矩陣 https://latex.csdn.net/eq?A%3D%28a_%7Bij%7D%29 ,記作 https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7DA_k%20%3D%20A
  2. 矩陣範數 :常用的矩陣範數有:行和範數 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B%5Cinfty%7D%3D%5Cmax_%7B1%5Cleq%20i%5Cleq%20n%7D%5Csum_%7Bj%20%3D%201%7D%5E%7Bn%7D%7Ca_%7Bij%7D%7C ,即矩陣每行元素絕對值之和的最大值。列和範數 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B1%7D%3D%5Cmax_%7B1%5Cleq%20j%5Cleq%20n%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7Ca_%7Bij%7D%7C
  3. 行列式的計算 :對於低階行列式可直接利用定義或行(列)展開定理計算。對於高階行列式,常利用行列式的性質將其化為上三角或下三角行列式,上(下)三角行列式的值等於主對角線元素之積。

例題解析

1.已知矩陣序列 https://latex.csdn.net/eq?A_k%3D%5Cbegin%7Bpmatrix%7D%5Cfrac%7B1%7D%7Bk%7D%261+%5Cfrac%7B1%7D%7Bk%5E2%7D%5C%5C2-%5Cfrac%7B1%7D%7Bk%7D%26%5Cfrac%7B3%7D%7Bk%5E3%7D%5Cend%7Bpmatrix%7D ,求 https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7DA_k

解: https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B11%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%5Cfrac%7B1%7D%7Bk%7D%3D0https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B12%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%281+%5Cfrac%7B1%7D%7Bk%5E2%7D%29%20%3D%201https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B21%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%282-%5Cfrac%7B1%7D%7Bk%7D%29%20%3D%202https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B22%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%5Cfrac%7B3%7D%7Bk%5E3%7D%3D0

所以 https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7DA_k%3D%5Cbegin%7Bpmatrix%7D0%261%5C%5C2%260%5Cend%7Bpmatrix%7D

2.求矩陣 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%26%20-%202%263%5C%5C4%265%26%20-%206%5C%5C7%26%20-%208%269%5Cend%7Bpmatrix%7D 的行和範數 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B%5Cinfty%7D

解:第 1 行元素絕對值之和為 https://latex.csdn.net/eq?%7C1%7C+%7C-2%7C+%7C3%7C%20%3D%206 ;第 2 行元素絕對值之和為 https://latex.csdn.net/eq?%7C4%7C+%7C5%7C+%7C-6%7C%20%3D%2015 ;第 3 行元素絕對值之和為 https://latex.csdn.net/eq?%7C7%7C+%7C-8%7C+%7C9%7C%20%3D%2024

所以 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B%5Cinfty%7D%3D24

3.求矩陣 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%26%20-%202%263%5C%5C4%265%26%20-%206%5C%5C7%26%20-%208%269%5Cend%7Bpmatrix%7D 的列和範數 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B1%7D

解:第 1 列元素絕對值之和為 https://latex.csdn.net/eq?%7C1%7C+%7C4%7C+%7C7%7C%20%3D%2012 ;第 2 列元素絕對值之和為 https://latex.csdn.net/eq?%7C-2%7C+%7C5%7C+%7C-8%7C%20%3D%2015 ;第 3 列元素絕對值之和為 https://latex.csdn.net/eq?%7C3%7C+%7C-6%7C+%7C9%7C%20%3D%2018

所以 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B1%7D%3D18

4.求矩陣 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%5C%5C3%264%5Cend%7Bpmatrix%7D 的 2 - 範數 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B2%7D

解:先求 https://latex.csdn.net/eq?A%5ETA%3D%5Cbegin%7Bpmatrix%7D1%263%5C%5C2%264%5Cend%7Bpmatrix%7D%5Cbegin%7Bpmatrix%7D1%262%5C%5C3%264%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D1%20+%209%262+12%5C%5C2%20+%2012%264%20+%2016%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D10%2614%5C%5C14%2620%5Cend%7Bpmatrix%7D

再求 https://latex.csdn.net/eq?A%5ETA 的特徵值, https://latex.csdn.net/eq?%5Cvert%5Clambda%20I%20-%20A%5ETA%5Cvert%3D%5Cbegin%7Bvmatrix%7D%5Clambda%20-%2010%26%20-%2014%5C%5C%20-%2014%26%5Clambda%20-%2020%5Cend%7Bvmatrix%7D%3D%28%5Clambda%20-%2010%29%28%5Clambda%20-%2020%29-196%3D%5Clambda%5E2%20-%2030%5Clambda%20+%20200%20-%20196%3D%5Clambda%5E2%20-%2030%5Clambda%20+%204

由求根公式 https://latex.csdn.net/eq?%5Clambda%3D%5Cfrac%7B30%5Cpm%5Csqrt%7B900%20-%2016%7D%7D%7B2%7D%3D%5Cfrac%7B30%5Cpm%5Csqrt%7B884%7D%7D%7B2%7D%3D15%5Cpm%5Csqrt%7B221%7D

最大特徵值 https://latex.csdn.net/eq?%5Clambda_%7Bmax%7D%3D15+%5Csqrt%7B221%7D ,所以 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B2%7D%3D%5Csqrt%7B15+%5Csqrt%7B221%7D%7D

5.計算行列式 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D1%262%263%264%5C%5C2%263%264%261%5C%5C3%264%261%262%5C%5C4%261%262%263%5Cend%7Bvmatrix%7D

解:將第 2、3、4 行都加到第 1 行,得 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D10%2610%2610%2610%5C%5C2%263%264%261%5C%5C3%264%261%262%5C%5C4%261%262%263%5Cend%7Bvmatrix%7D%3D10%5Cbegin%7Bvmatrix%7D1%261%261%261%5C%5C2%263%264%261%5C%5C3%264%261%262%5C%5C4%261%262%263%5Cend%7Bvmatrix%7D

再將第 1 行乘以 https://latex.csdn.net/eq?-2 加到第 2 行,乘以 https://latex.csdn.net/eq?-3 加到第 3 行,乘以 https://latex.csdn.net/eq?-4 加到第 4 行,得 https://latex.csdn.net/eq?10%5Cbegin%7Bvmatrix%7D1%261%261%261%5C%5C0%261%262%26%20-%201%5C%5C0%261%26%20-%202%26%20-%201%5C%5C0%26%20-%203%26%20-%202%26%20-%201%5Cend%7Bvmatrix%7D

繼續通過行運算化為上三角行列式,計算可得值為 https://latex.csdn.net/eq?160

6.已知矩陣序列 https://latex.csdn.net/eq?A_k%3D%5Cbegin%7Bpmatrix%7D%5Cfrac%7B1%7D%7Bk%5E2%7D%26%5Cfrac%7B2%7D%7Bk%5E3%7D%5C%5C%20%5Cfrac%7B3%7D%7Bk%7D%26%5Cfrac%7B4%7D%7Bk%5E4%7D%5Cend%7Bpmatrix%7D ,判斷其是否收斂。

解: https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B11%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%5Cfrac%7B1%7D%7Bk%5E2%7D%3D0https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B12%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%5Cfrac%7B2%7D%7Bk%5E3%7D%3D0https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B21%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%5Cfrac%7B3%7D%7Bk%7D%3D0https://latex.csdn.net/eq?%5Clim_%7Bk%5Crightarrow%5Cinfty%7Da_%7B22%7D%5E%7B%28k%29%7D%3D%5Clim_%7Bk%5Crightarrow%5Cinfty%7D%5Cfrac%7B4%7D%7Bk%5E4%7D%3D0

所以 https://latex.csdn.net/eq?%5C%7BA_k%5C%7D 收斂於零矩陣 https://latex.csdn.net/eq?%5Cbegin%7Bpmatrix%7D0%260%5C%5C0%260%5Cend%7Bpmatrix%7D

7.求矩陣 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D%20-%201%262%26%20-%203%5C%5C4%26%20-%205%266%5C%5C%20-%207%268%26%20-%209%5Cend%7Bpmatrix%7D 的行和範數
https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B%5Cinfty%7D

解:第 1 行元素絕對值之和為 https://latex.csdn.net/eq?%7C-1%7C+%7C2%7C+%7C-3%7C%20%3D%206 ;第 2 行元素絕對值之和為 https://latex.csdn.net/eq?%7C4%7C+%7C-5%7C+%7C6%7C%20%3D%2015 ;第 3 行元素絕對值之和為 https://latex.csdn.net/eq?%7C-7%7C+%7C8%7C+%7C-9%7C%20%3D%2024

所以 https://latex.csdn.net/eq?%5C%7CA%5C%7C_%7B%5Cinfty%7D%3D24

8.計算行列式 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D1%261%261%261%5C%5C1%262%262%262%5C%5C1%262%263%263%5C%5C1%262%263%264%5Cend%7Bvmatrix%7D

解:從第 2 行開始,每行減去上一行,得 https://latex.csdn.net/eq?%5Cbegin%7Bvmatrix%7D1%261%261%261%5C%5C0%261%261%261%5C%5C0%260%261%261%5C%5C0%260%260%261%5Cend%7Bvmatrix%7D%3D1