目录

神聖的綫性代數速成例題4.-矩陣乘法的充要條件矩陣運算的定義

目录

神聖的綫性代數速成例題4. 矩陣乘法的充要條件、矩陣運算的定義

  1. 矩陣乘法的充要條件 :設 https://latex.csdn.net/eq?A%3D%28a_%7Bij%7D%29https://latex.csdn.net/eq?m%5Ctimes%20s 矩陣, https://latex.csdn.net/eq?B%3D%28b_%7Bij%7D%29https://latex.csdn.net/eq?s%5Ctimes%20n 矩陣,則 https://latex.csdn.net/eq?Ahttps://latex.csdn.net/eq?B 可相乘,乘積 https://latex.csdn.net/eq?AB 是一個 https://latex.csdn.net/eq?m%5Ctimes%20n 矩陣。即矩陣 https://latex.csdn.net/eq?A
  2. 矩陣運算的定義
  • 加法 :若 https://latex.csdn.net/eq?A%3D%28a_%7Bij%7D%29https://latex.csdn.net/eq?B%3D%28b_%7Bij%7D%29 都是 https://latex.csdn.net/eq?m%5Ctimes%20n 矩陣,則 https://latex.csdn.net/eq?A%20+%20B%3D%28a_%7Bij%7D+b_%7Bij%7D%29 ,也是 https://latex.csdn.net/eq?m%5Ctimes%20n 矩陣。
  • 數乘 :若 https://latex.csdn.net/eq?k 是一個數, https://latex.csdn.net/eq?A%3D%28a_%7Bij%7D%29https://latex.csdn.net/eq?m%5Ctimes%20n 矩陣,則 https://latex.csdn.net/eq?kA%3D%28ka_%7Bij%7D ,仍是 https://latex.csdn.net/eq?m%5Ctimes%20n 矩陣。

例題解析

1.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%5C%5C3%264%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7D5%266%5C%5C7%268%5Cend%7Bpmatrix%7D ,判斷 https://latex.csdn.net/eq?AB 是否可計算,若可計算求其結果。

解: https://latex.csdn.net/eq?Ahttps://latex.csdn.net/eq?2%5Ctimes2 矩陣, https://latex.csdn.net/eq?Bhttps://latex.csdn.net/eq?2%5Ctimes2 矩陣, https://latex.csdn.net/eq?A 的列數等於 https://latex.csdn.net/eq?B 的行數,所以 https://latex.csdn.net/eq?AB 可計算。

https://latex.csdn.net/eq?AB%3D%5Cbegin%7Bpmatrix%7D1%5Ctimes5%20+%202%5Ctimes7%261%5Ctimes6+2%5Ctimes8%5C%5C3%5Ctimes5%20+%204%5Ctimes7%263%5Ctimes6+4%5Ctimes8%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D5%20+%2014%266%20+%2016%5C%5C15%20+%2028%2618%20+%2032%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D19%2622%5C%5C43%2650%5Cend%7Bpmatrix%7D

2.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%263%5C%5C4%265%266%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7D7%268%5C%5C9%2610%5C%5C11%2612%5Cend%7Bpmatrix%7D ,判斷 https://latex.csdn.net/eq?ABhttps://latex.csdn.net/eq?BA 是否可計算,若可計算求其結果。解: https://latex.csdn.net/eq?Ahttps://latex.csdn.net/eq?2%5Ctimes3 矩陣, https://latex.csdn.net/eq?Bhttps://latex.csdn.net/eq?3%5Ctimes2 矩陣, https://latex.csdn.net/eq?A 的列數等於 https://latex.csdn.net/eq?B 的行數,所以 https://latex.csdn.net/eq?AB 可計算。

https://latex.csdn.net/eq?AB%3D%5Cbegin%7Bpmatrix%7D1%5Ctimes7+2%5Ctimes9%20+%203%5Ctimes11%261%5Ctimes8+2%5Ctimes10+3%5Ctimes12%5C%5C4%5Ctimes7+5%5Ctimes9%20+%206%5Ctimes11%264%5Ctimes8+5%5Ctimes10+6%5Ctimes12%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D7%20+%2018+33%268%20+%2020+36%5C%5C28%20+%2045+66%2632%20+%2050+72%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D58%2664%5C%5C139%26154%5Cend%7Bpmatrix%7D

https://latex.csdn.net/eq?B 的列數等於 https://latex.csdn.net/eq?A 的行數,所以 https://latex.csdn.net/eq?BA 也可計算。

https://latex.csdn.net/eq?BA%3D%5Cbegin%7Bpmatrix%7D7%5Ctimes1+8%5Ctimes4%267%5Ctimes2+8%5Ctimes5%267%5Ctimes3+8%5Ctimes6%5C%5C9%5Ctimes1+10%5Ctimes4%269%5Ctimes2+10%5Ctimes5%269%5Ctimes3+10%5Ctimes6%5C%5C11%5Ctimes1+12%5Ctimes4%2611%5Ctimes2+12%5Ctimes5%2611%5Ctimes3+12%5Ctimes6%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D7%20+%2032%2614%20+%2040%2621+48%5C%5C9%20+%2040%2618%20+%2050%2627+60%5C%5C11%20+%2048%2622%20+%2060%2633+72%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D39%2654%2669%5C%5C49%2668%2687%5C%5C59%2682%26105%5Cend%7Bpmatrix%7D

3.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%5C%5C3%264%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7D5%266%267%5C%5C8%269%2610%5Cend%7Bpmatrix%7D ,判斷 https://latex.csdn.net/eq?AB 是否可計算。

解: https://latex.csdn.net/eq?Ahttps://latex.csdn.net/eq?2%5Ctimes2 矩陣, https://latex.csdn.net/eq?Bhttps://latex.csdn.net/eq?2%5Ctimes3 矩陣, https://latex.csdn.net/eq?A 的列數 https://latex.csdn.net/eq?2 等於 https://latex.csdn.net/eq?B 的行數 https://latex.csdn.net/eq?2 ,所以 https://latex.csdn.net/eq?AB 可以计算,其结果为一个 https://latex.csdn.net/eq?2%5Ctimes3 的矩阵。

计算过程为:设 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7Da_%7B11%7D%26a_%7B12%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5Cend%7Bpmatrix%7D ,则 https://latex.csdn.net/eq?AB%3D%5Cbegin%7Bpmatrix%7Da_%7B11%7Db_%7B11%7D+a_%7B12%7Db_%7B21%7D%26a_%7B11%7Db_%7B12%7D+a_%7B12%7Db_%7B22%7D%26a_%7B11%7Db_%7B13%7D+a_%7B12%7Db_%7B23%7D%5C%5Ca_%7B21%7Db_%7B11%7D+a_%7B22%7Db_%7B21%7D%26a_%7B21%7Db_%7B12%7D+a_%7B22%7Db_%7B22%7D%26a_%7B21%7Db_%7B13%7D+a_%7B22%7Db_%7B23%7D%5Cend%7Bpmatrix%7D

4.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%5C%5C3%264%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7D5%266%5C%5C7%268%5Cend%7Bpmatrix%7D ,求 https://latex.csdn.net/eq?A%20+%20B

解: https://latex.csdn.net/eq?A%20+%20B%3D%5Cbegin%7Bpmatrix%7D1+5%262%20+%206%5C%5C3+7%264%20+%208%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D6%268%5C%5C10%2612%5Cend%7Bpmatrix%7D

5.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%263%5C%5C4%265%266%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?k%20%3D%203 ,求 https://latex.csdn.net/eq?kA

解: https://latex.csdn.net/eq?kA%20%3D%203%5Cbegin%7Bpmatrix%7D1%262%263%5C%5C4%265%266%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D3%5Ctimes1%263%5Ctimes2%263%5Ctimes3%5C%5C3%5Ctimes4%263%5Ctimes5%263%5Ctimes6%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D3%266%269%5C%5C12%2615%2618%5Cend%7Bpmatrix%7D

6.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7Da_%7B11%7D%26a_%7B12%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7Db_%7B11%7D%26b_%7B12%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?C%3D%5Cbegin%7Bpmatrix%7Dc_%7B11%7D%26c_%7B12%7D%5C%5Cc_%7B21%7D%26c_%7B22%7D%5Cend%7Bpmatrix%7D ,證明 https://latex.csdn.net/eq?%28A%20+%20B%29+C%20%3D%20A+%28B%20+%20C%29

解:左邊

https://latex.csdn.net/eq?%28A%20+%20B%29+C%3D%5Cleft%28%5Cbegin%7Bpmatrix%7Da_%7B11%7D+b_%7B11%7D%26a_%7B12%7D+b_%7B12%7D%5C%5Ca_%7B21%7D+b_%7B21%7D%26a_%7B22%7D+b_%7B22%7D%5Cend%7Bpmatrix%7D+%5Cbegin%7Bpmatrix%7Dc_%7B11%7D%26c_%7B12%7D%5C%5Cc_%7B21%7D%26c_%7B22%7D%5Cend%7Bpmatrix%7D%5Cright%29%3D%5Cbegin%7Bpmatrix%7D%28a_%7B11%7D+b_%7B11%7D%29+c_%7B11%7D%26%28a_%7B12%7D+b_%7B12%7D%29+c_%7B12%7D%5C%5C%28a_%7B21%7D+b_%7B21%7D%29+c_%7B21%7D%26%28a_%7B22%7D+b_%7B22%7D%29+c_%7B22%7D%5Cend%7Bpmatrix%7D

右邊 https://latex.csdn.net/eq?A+%28B%20+%20C%29%3D%5Cbegin%7Bpmatrix%7Da_%7B11%7D%26a_%7B12%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%5Cend%7Bpmatrix%7D+%5Cleft%28%5Cbegin%7Bpmatrix%7Db_%7B11%7D+c_%7B11%7D%26b_%7B12%7D+c_%7B12%7D%5C%5Cb_%7B21%7D+c_%7B21%7D%26b_%7B22%7D+c_%7B22%7D%5Cend%7Bpmatrix%7D%5Cright%29%3D%5Cbegin%7Bpmatrix%7Da_%7B11%7D+%28b_%7B11%7D+c_%7B11%7D%29%26a_%7B12%7D+%28b_%7B12%7D+c_%7B12%7D%29%5C%5Ca_%7B21%7D+%28b_%7B21%7D+c_%7B21%7D%29%26a_%7B22%7D+%28b_%7B22%7D+c_%7B22%7D%29%5Cend%7Bpmatrix%7D

由加法結合律, https://latex.csdn.net/eq?%28a_%7Bij%7D+b_%7Bij%7D%29+c_%7Bij%7D%3Da_%7Bij%7D+%28b_%7Bij%7D+c_%7Bij%7D%29 ,所以 https://latex.csdn.net/eq?%28A%20+%20B%29+C%20%3D%20A+%28B%20+%20C%29

7.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D1%262%5C%5C3%264%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?B%3D%5Cbegin%7Bpmatrix%7D%20-%201%26%20-%202%5C%5C%20-%203%26%20-%204%5Cend%7Bpmatrix%7D ,求 https://latex.csdn.net/eq?A%20+%20B

解: https://latex.csdn.net/eq?A%20+%20B%3D%5Cbegin%7Bpmatrix%7D1+%28%20-%201%29%262+%28%20-%202%29%5C%5C3+%28%20-%203%29%264+%28%20-%204%29%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D0%260%5C%5C0%260%5Cend%7Bpmatrix%7D

8.已知 https://latex.csdn.net/eq?A%3D%5Cbegin%7Bpmatrix%7D2%264%5C%5C6%268%5Cend%7Bpmatrix%7Dhttps://latex.csdn.net/eq?k%3D-1 ,求 https://latex.csdn.net/eq?kA

解: https://latex.csdn.net/eq?kA%3D-1%5Cbegin%7Bpmatrix%7D2%264%5C%5C6%268%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D-1%5Ctimes2%26-1%5Ctimes4%5C%5C-1%5Ctimes6%26-1%5Ctimes8%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D-2%26-4%5C%5C-6%26-8%5Cend%7Bpmatrix%7D