AI-医学影像分割方法与流程
AI-医学影像分割方法与流程
AI医学影像分割方法与流程–基于低场磁共振影像的病灶识别
– 作者:coder_fang AI框架:PaddleSeg
- 数据准备,使用MedicalLabelMe进行dcm文件标注,产生同名.json文件。
- 编写程序生成训练集图片,包括掩码图。
- 代码如下: def doCvt(labelDir): outdir=labelDir+"\output"; if os.path.exists(outdir): shutil.rmtree(outdir) os.makedirs(outdir+"\images") #原始图 os.makedirs(outdir + “\masks1”) #可视掩码图,只包含0,255 os.makedirs(outdir + “\masks2”) #训练掩码图,只包含0,1 start=0 files=glob.glob(labelDir+’*.json’) for f in files: fname=os.path.basename(f) jsondata = json.load(open(labelDir+"\"+ fname, encoding=“utf-8”)) imagePath = os.path.join(labelDir, jsondata.get(“image_path”)) ds = pydicom.read_file(imagePath) # 读取.dcm文件 img = ds.pixel_array # 提取图像信息 img = (img * (255/img.max())).astype(np.uint8) pathout ="{}\images\{:05d}.png".format(outdir,start) result=cv2.bilateralFilter(img,11,64,128) #对低场图片进行去噪声 cv2.imwrite(pathout, result) label_name_to_value = {’background’: 0,‘H’:1} for shape in jsondata.get(“frames”)[0].get(“shapes”): label_name = shape[’label’] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value mask = np.zeros(img.shape ,dtype=np.uint8) # 假设图片是灰度图,调整dtype为np.uint8
遍历所有形状并绘制到掩码上
for shape in jsondata.get(“frames”)[0].get(“shapes”):
获取形状的类型和坐标点
shape_type = shape[‘shape_type’] points = shape[‘points’] if shape_type == ‘polygon’:
绘制多边形掩码
cv2.fillPoly(mask, [np.array(points).reshape((-1, 1, 2)).astype(np.int32)], 1) elif shape_type == ‘rectangle’:
绘制矩形掩码(转换为多边形)
x, y, w, h = points pts = np.array([[x, y], [x + w, y], [x + w, y + h], [x, y + h]]) cv2.fillPoly(mask, [pts.reshape((-1, 1, 2)).astype(np.int32)], 1)
可以根据需要添加其他形状的处理方式,如圆形等。
保存可视掩码图像(例如PNG格式)
pathout = “{}\masks1\{:05d}.png”.format(outdir, start) cv2.imwrite(pathout, (mask * 255).astype(np.uint8))
保存训练掩码图像(例如PNG格式)
pathout = “{}\masks2\{:05d}.png”.format(outdir, start)
cv2.imwrite(pathout, mask.astype(np.uint8))
lbl_viz = imgviz.label2rgb(
mask, img
)
start+=1
效果如图:
4. 使用PaddlePaddle 2.6.2版本,单独下载PaddleSeg2.8.1版本进行编译,2.8以前版本会有问题。
5. 生成训练数据和验证数据集对应列表:
def create_list(data_path):
image_path = os.path.join(data_path, ‘images’)
label_path = os.path.join(data_path, ‘masks2’)
data_names = os.listdir(image_path)
random.shuffle(data_names) # 打乱数据
with open(os.path.join(data_path, ’train_list.txt’), ‘w’) as tf:
with open(os.path.join(data_path, ‘val_list.txt’), ‘w’) as vf:
for idx, data_name in enumerate(data_names):
img = os.path.join(‘images’, data_name)
lab = os.path.join(‘masks2’, data_name)
if idx % 9 == 0: # 90%的作为训练集
vf.write(img + ’ ’ + lab + ‘\n’)
else:
tf.write(img + ’ ’ + lab + ‘\n’)
print(‘数据列表生成完成’)
data_path = ‘work/output’
create_list(data_path) # 生成数据列表
6. 基于列表生成数据集并进行验证:
构建训练集
train_transforms = [ T.RandomHorizontalFlip(),#水平翻转 T.RandomVerticalFlip(), T.RandomNoise(), T.Resize(), T.Normalize() # 归一化 ] train_dataset = Dataset( transforms=train_transforms, dataset_root=‘work/output’, num_classes=2, img_channels=1, mode=‘train’, train_path=‘work/output/train_list.txt’, separator=’ ‘, )
构建验证集
val_transforms = [
T.Resize(),
T.Normalize()
]
val_dataset = Dataset(
transforms=val_transforms,
dataset_root=‘work/output’,
num_classes=2,
img_channels=1,
mode=‘val’,
val_path=‘work/output/val_list.txt’,
separator=’ ‘,
)
#随机抽取训练集数据进行可视化验证
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(10,16))
for i in range(1,6,2):
,img,label,= train_dataset[random.randint(0,100)].items()
print(img[1].shape)
img = np.transpose(img[1], (1,2,0))
img = img*0.5 + 0.5
plt.subplot(3,2,i),plt.imshow(img,‘gray’),plt.title(‘img’),plt.xticks([]),plt.yticks([])
plt.subplot(3,2,i+1),plt.imshow(label[1],‘gray’),plt.title(’label’),plt.xticks([]),plt.yticks([])
plt.show
7. 构建训练网络并训练:
#可以尝试PaddelSeg中多种分割模型,这里目前测试的BiSeNetV2均衡了效果和训练验证速度,表现还可以
model = BiSeNetV2(num_classes=2,#二分类分割
in_channels=1,#单通道
lambd=0.25,
align_corners=False,
pretrained=‘OutDir/best_model/model.pdparams’
)
base_lr = 0.0005
lr = paddle.optimizer.lr.PolynomialDecay(learning_rate=base_lr, decay_steps=1500, verbose=False)
optimizer = paddle.optimizer.Momentum(lr, parameters=model.parameters(), momentum=0.9, weight_decay=4.0e-
losses = {}
losses[’types’] = [CrossEntropyLoss()] *5
losses[‘coef’] = [0.8,0.2]*5
from paddleseg.core import train
train(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
optimizer=optimizer,
save_dir=‘OutDir’,
iters=3000,
batch_size=8,
save_interval=200,
log_iters=20,
num_workers=0,
losses=losses,
use_vdl=True)#开始训练,这里最好使用GPU训练
8. 验证数据,并将预测结果融合到原始图中
#测试结果
transforms = T.Compose([
T.Resize(target_size=(512, 512)),
T.Normalize()
])
#显示图片时调整合适的窗宽窗位
def wwwl(im,window_width,window_level):
计算最大值和最小值
min_val = window_level - window_width / 2
max_val = window_level + window_width / 2
#im = ((im - min_val) / (max_val - min_val)) * 255
im=np.clip(im,min_val,max_val).astype(np.uint8)
return im
#加载模型
model = BiSeNetV2(num_classes=2,
in_channels=1,)
model_path = ‘OutDir/best_model/model.pdparams’
para_state_dict = paddle.load(model_path)
model.set_dict(para_state_dict)
import matplotlib.pyplot as plt
import numpy as np
#testimg里放置一些病灶图片,尽量不是训练集里数据
files = glob.glob(‘work/testimg/.png’)
row=(int)(len(files))
plt.figure(figsize=(16,row8))
i=1;
for f in files:
#读取数据
im = cv2.imread(f, 0).astype(‘float32’)
im=F.normalize(im,0.5,0.5)
h,w = im.shape
data = np.expand_dims(im,axis=0).repeat(1,axis=0)
data = data[np.newaxis, …]
data = paddle.to_tensor(data)
predata=model(data)
output = predata[0].numpy()
output = np.argmax(output,axis=1)
output = np.squeeze(output)
#输入模型预测的时候缩放到(512,512),现在要缩放到原始数据的大小
output = cv2.resize(output, (h, w), interpolation=cv2.INTER_NEAREST)
output = output.astype(np.uint8)128
#归到255
im=(im0.5+0.5)255
im=wwwl(im,128,60)
max_val = np.max(im)
im=im(255/max_val)
imgori=cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_GRAY2BGR);
imgpre=cv2.cvtColor(output, cv2.COLOR_GRAY2BGR);
imgpre[:,:,1]= 0
imgpre[:,:,2]= 0
mask_img=cv2.addWeighted(imgpre, 0.2, imgori, 0.5, 0)
plt.subplot(row,2,i),plt.imshow(mask_img,‘gray’),plt.title(‘img’),plt.xticks([]),plt.yticks([])
i+=1
plt.show
9. 基于上述模型持续优化并训练,如需模型工程化,可使用paddleseg 中的export.py ,将模型进行转换,转换后可将其集成到python或c++工程使用,转换命令如下:
python export.py –model_path OutDir/best_model/model.pdparams –input_shape 1 1 512 512 –save_dir OutDir/Saved –config work/config.yml
完!