目录

PyTorch-实现-Conditional-DCGAN条件深度卷积生成对抗网络进行图像到图像转换的示例代码

PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码

以下是一个使用 PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和 4 个工艺参数,根据这些输入生成相应的图片。

1 导入必要的库

import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader, Dataset import numpy as np import matplotlib.pyplot as plt

检查是否有可用的 GPU

device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

2 定义数据集类

class ImagePairDataset(Dataset): def init(self, image_pairs, params): self.image_pairs = image_pairs self.params = params def len(self): return len(self.image_pairs) def getitem(self, idx): input_image, target_image = self.image_pairs[idx] param = self.params[idx] return input_image, target_image, param

3 定义生成器和判别器

生成器

class Generator(nn.Module): def init(self, z_dim=4, img_channels=3): super(Generator, self).init() self.gen = nn.Sequential(

输入: [batch_size, z_dim + 4, 1, 1]

self._block(z_dim + 4, 1024, 4, 1, 0), # [batch_size, 1024, 4, 4] self._block(1024, 512, 4, 2, 1), # [batch_size, 512, 8, 8] self._block(512, 256, 4, 2, 1), # [batch_size, 256, 16, 16] self._block(256, 128, 4, 2, 1), # [batch_size, 128, 32, 32] nn.ConvTranspose2d(128, img_channels, kernel_size=4, stride=2, padding=1), nn.Tanh() ) def _block(self, in_channels, out_channels, kernel_size, stride, padding): return nn.Sequential( nn.ConvTranspose2d( in_channels, out_channels, kernel_size, stride, padding, bias=False ), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, z, params): params = params.view(params.size(0), 4, 1, 1) x = torch.cat([z, params], dim=1) return self.gen(x)

判别器

class Discriminator(nn.Module): def init(self, img_channels=3): super(Discriminator, self).init() self.disc = nn.Sequential(

输入: [batch_size, img_channels + 4, 64, 64]

nn.Conv2d(img_channels + 4, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2), self._block(64, 128, 4, 2, 1), # [batch_size, 128, 16, 16] self._block(128, 256, 4, 2, 1), # [batch_size, 256, 8, 8] self._block(256, 512, 4, 2, 1), # [batch_size, 512, 4, 4] nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=0), nn.Sigmoid() ) def _block(self, in_channels, out_channels, kernel_size, stride, padding): return nn.Sequential( nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, bias=False ), nn.BatchNorm2d(out_channels), nn.LeakyReLU(0.2) ) def forward(self, img, params): params = params.view(params.size(0), 4, 1, 1).repeat(1, 1, img.size(2), img.size(3)) x = torch.cat([img, params], dim=1) return self.disc(x)

4 训练代码

def train_conditional_dcgan(image_pairs, params, batch_size=32, epochs=10, lr=0.0002, z_dim=4): dataset = ImagePairDataset(image_pairs, params) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) gen = Generator(z_dim).to(device) disc = Discriminator().to(device) criterion = nn.BCELoss() opt_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999)) opt_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999)) for epoch in range(epochs): for i, (input_images, target_images, param) in enumerate(dataloader): input_images = input_images.to(device) target_images = target_images.to(device) param = param.to(device)

训练判别器

opt_disc.zero_grad() real_labels = torch.ones((target_images.size(0), 1, 1, 1)).to(device) fake_labels = torch.zeros((target_images.size(0), 1, 1, 1)).to(device)

计算判别器对真实图像的损失

real_output = disc(target_images, param) d_real_loss = criterion(real_output, real_labels)

生成假图像

z = torch.randn(target_images.size(0), z_dim, 1, 1).to(device) fake_images = gen(z, param)

计算判别器对假图像的损失

fake_output = disc(fake_images.detach(), param) d_fake_loss = criterion(fake_output, fake_labels)

总判别器损失

d_loss = d_real_loss + d_fake_loss d_loss.backward() opt_disc.step()

训练生成器

opt_gen.zero_grad() output = disc(fake_images, param) g_loss = criterion(output, real_labels) g_loss.backward() opt_gen.step() print(f’Epoch [{epoch+1}/{epochs}] D_loss: {d_loss.item():.4f} G_loss: {g_loss.item():.4f}’) return gen

5 可视化代码

def visualize_generated_images(gen, input_images, params, z_dim=4): input_images = input_images.to(device) params = params.to(device) z = torch.randn(input_images.size(0), z_dim, 1, 1).to(device) fake_images = gen(z, params).cpu().detach() fig, axes = plt.subplots(1, input_images.size(0), figsize=(15, 3)) for i in range(input_images.size(0)): img = fake_images[i].permute(1, 2, 0).numpy() img = (img + 1) / 2 # 从 [-1, 1] 转换到 [0, 1] axes[i].imshow(img) axes[i].axis(‘off’) plt.show()

6 示例使用

假设 image_pairs 是一个包含图像对的列表,params 是一个包含 4 个工艺参数的列表

image_pairs = [] # 这里需要替换为实际的图像对数据 params = [] # 这里需要替换为实际的工艺参数数据

训练模型

gen = train_conditional_dcgan(image_pairs, params)

可视化生成的图像

test_input_images, test_target_images, test_params = image_pairs[:5], image_pairs[:5], params[:5] test_input_images = torch.stack([torch.tensor(img) for img in test_input_images]).float() test_params = torch.tensor(test_params).float() visualize_generated_images(gen, test_input_images, test_params)

代码说明

  1. 数据集类ImagePairDataset 用于加载图像对和工艺参数。
  2. 生成器和判别器GeneratorDiscriminator 分别定义了生成器和判别器的网络结构。
  3. 训练代码train_conditional_dcgan 函数用于训练 Conditional DCGAN 模型。
  4. 可视化代码visualize_generated_images 函数用于可视化生成的图像。
  5. 示例使用 :最后部分展示了如何使用上述函数进行训练和可视化。 请注意,你需要将 image_pairsparams 替换为实际的数据集。此外,代码中的超参数(如 batch_sizeepochslr 等)可以根据实际情况进行调整。